Loading [MathJax]/extensions/MathZoom.js
Theoretical studies and numerical experiments suggest that unstructured high-order
methods can provide solutions to otherwise intractable fluid flow problems within complex
geometries. However, it remains the case that existing high-order schemes are generally
less robust and more complex to implement than their low-order counterparts. These issues,
in conjunction with difficulties generating high-order meshes, have limited the adoption
of high-order...
In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...
We consider a fully practical finite element approximation of the following degenerate systemsubject to an initial condition on the temperature, , and boundary conditions on both and the electric potential, . In the above is the enthalpy incorporating the latent heat of melting, is the temperature dependent heat conductivity, and is the electrical conductivity. The latter is zero in the frozen zone, , which gives rise to the degeneracy in this Stefan system. In addition to showing stability...
We consider a fully practical finite element approximation of the
following degenerate system
subject to an initial condition on the temperature, u,
and boundary conditions on both u
and the electric potential, ϕ.
In the above
p(u) is the enthalpy
incorporating the latent heat of melting, α(u) > 0 is
the temperature dependent heat conductivity, and σ(u) > 0
is the electrical
conductivity. The latter is zero in the frozen zone, u ≤ 0,
which gives rise to the degeneracy in this Stefan...
We consider a system
of degenerate parabolic equations modelling a
thin film, consisting of two layers of immiscible Newtonian liquids, on
a solid horizontal substrate.
In addition, the model includes the presence of insoluble surfactants on
both the free liquid-liquid and liquid-air interfaces,
and the presence of both attractive and repulsive van der Waals forces
in terms of the heights of the two layers.
We show that this system formally satisfies a Lyapunov structure,
and a second energy...
We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic
dumbbell models that arise from the kinetic theory of dilute solutions of polymeric
liquids with noninteracting polymer chains. The class of models involves the unsteady
incompressible Navier–Stokes equations in a bounded domain
Ω ⊂ ℝd, d = 2 or 3, for
the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic
dumbbell models that arise from the kinetic theory of dilute solutions of polymeric
liquids with noninteracting polymer chains. The class of models involves the unsteady
incompressible Navier–Stokes equations in a bounded domain
Ω ⊂ ℝd, d = 2 or 3, for
the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions
of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ , d = 2 or 3, for the velocity and
the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space is proved.
Currently displaying 1 –
20 of
32