Page 1 Next

Displaying 1 – 20 of 32

Showing per page

Enabling numerical accuracy of Navier-Stokes-α through deconvolution and enhanced stability

Carolina C. Manica, Monika Neda, Maxim Olshanskii, Leo G. Rebholz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and analyze a finite element method for approximating solutions to the Navier-Stokes-alpha model (NS-α) that utilizes approximate deconvolution and a modified grad-div stabilization and greatly improves accuracy in simulations. Standard finite element schemes for NS-α suffer from two major sources of error if their solutions are considered approximations to true fluid flow: (1) the consistency error arising from filtering; and (2) the dramatic effect of the large pressure error on the...

Enabling numerical accuracy of Navier-Stokes-α through deconvolution and enhanced stability*

Carolina C. Manica, Monika Neda, Maxim Olshanskii, Leo G. Rebholz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze a finite element method for approximating solutions to the Navier-Stokes-alpha model (NS-α) that utilizes approximate deconvolution and a modified grad-div stabilization and greatly improves accuracy in simulations. Standard finite element schemes for NS-α suffer from two major sources of error if their solutions are considered approximations to true fluid flow: (1) the consistency error arising from filtering; and (2) the dramatic effect of the large pressure error on the...

Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics

Othmar Koch, Christof Neuhauser, Mechthild Thalhammer (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order p applied to the multi-configuration time-dependent...

Error Control and Andaptivity for a Phase Relaxation Model

Zhiming Chen, Ricardo H. Nochetto, Alfred Schmidt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori...

Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation

Ujjwal Koley (2012)

Open Mathematics

We are concerned with convergence of spectral method for the numerical solution of the initial-boundary value problem associated to the Korteweg-de Vries-Kawahara equation (Kawahara equation, in short), which is a transport equation perturbed by dispersive terms of the 3rd and 5th order. This equation appears in several fluid dynamics problems. It describes the evolution of small but finite amplitude long waves in various problems in fluid dynamics. These equations are discretized in space by the...

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present. Various physical parameters appearing in the...

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present....

Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems

Vít Dolejší, Miloslav Feistauer, Jiří Felcman, Alice Kliková (2002)

Applications of Mathematics

The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the L 2 ( L 2 ) and L 2 ( H 1 ) error estimates are established. At the end...

Error estimates for Galerkin reduced-order models of the semi-discrete wave equation

D. Amsallem, U. Hetmaniuk (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums...

Error of the two-step BDF for the incompressible Navier-Stokes problem

Etienne Emmrich (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional case....

Currently displaying 1 – 20 of 32

Page 1 Next