Page 1

Displaying 1 – 6 of 6

Showing per page

Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations

Nikolai Yu. Bakaev, Michel Crouzeix, Vidar Thomée (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assumed to be quasiuniform. In the present paper we show a resolvent estimate, in one and two space dimensions,...

Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations

Nikolai Yu. Bakaev, Michel Crouzeix, Vidar Thomée (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assumed to be quasiuniform. In the present paper we show a resolvent estimate, in one and two space dimensions, under...

Moving Dirichlet boundary conditions

Robert Altmann (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second...

Currently displaying 1 – 6 of 6

Page 1