Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
Page 1
L. A. Bales (1993)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
El Hachimi, Abderrahmane, Ammi, Moulay Rachid Sidi (2005)
International Journal of Mathematics and Mathematical Sciences
Marián Slodička (1992)
Commentationes Mathematicae Universitatis Carolinae
A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.
Gabriel Acosta, Julián Fernández Bonder, Pablo Groisman, Julio Daniel Rossi (2002)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations , in ; fully coupled by the boundary conditions , on , where is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation . We prove that if blows up in finite time then can fail to blow up if and only if and , which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover,...
Gabriel Acosta, Julián Fernández Bonder, Pablo Groisman, Julio Daniel Rossi (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω x (0,T); fully coupled by the boundary conditions , on ∂Ω x (0,T), where Ω is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U,V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1) , which is the same condition as...
Marián Slodička (1991)
Commentationes Mathematicae Universitatis Carolinae
The purpose of this paper is to derive the error estimates for discretization in time of a semilinear parabolic equation in a Banach space. The estimates are given in the norm of the space for when the initial condition is not regular.
Marián Slodička (1989)
Commentationes Mathematicae Universitatis Carolinae
W. Jäger, J. Kačur (1995)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Willi Jäger, Jozef Kacur (1991/1992)
Numerische Mathematik
Milan Pultar (1984)
Aplikace matematiky
Georgios Akrivis, Vassilios A. Dougalis, Ohannes Karakashian (1997)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Bruno Sportisse, Jaouad Boutahar, Edouard Debry, Denis Quélo, Karine Sartelet (2002)
RACSAM
In this article we discuss some issues related to Air Pollution modelling (as viewed by the authors): subgrid parametrization, multiphase modelling, reduction of high dimensional models and data assimilation. Numerical applications are given with POLAIR, a 3D numerical platform devoted to modelling of atmospheric trace species.
O. Nevanlinna, R. Jeltsch (1981)
Numerische Mathematik
Satish C. Reddy, Lloyd N. Trefethen (1992)
Numerische Mathematik
Robert McLachlan (1993/1994)
Numerische Mathematik
Page 1