The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale
reaction waves. This type of problems induces peculiar difficulties and potentially large
stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical
source term as well as from the presence of large spatial gradients in the reactive
fronts, spatially very localized. A new resolution strategy was recently introduced
? that combines...
Computational analysis of quasi-brittle fracture in cement-based and similar composites, supplied by various types of rod, fibre, etc. reinforcement, is crucial for the prediction of their load bearing ability and durability, but rather difficult because of the risk of initiation of zones of microscopic defects, followed by formation and propagation of a large number of macroscopic cracks. A reasonable and complete deterministic description of relevant physical processes is rarely available. Thus,...
2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)This paper provides a new method and corresponding numerical schemes
to approximate a fractional-in-space diffusion equation on a bounded domain
under boundary conditions of the Dirichlet, Neumann or Robin type.
The method is based on a matrix representation of the fractional-in-space
operator and the novelty of this approach is that a standard discretisation
of the operator leads to a system of linear ODEs with the matrix...
For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.
The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.
The topic of this paper is the numerical analysis of time
periodic solution for electro-magnetic phenomena.
The Limit Absorption Method (LAM)
which forms the basis of our study is presented. Theoretical
results have been proved in the linear finite dimensional case. This
method is applied to scattering problems and transport of charged
particles.
Currently displaying 1 –
8 of
8