Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation.
We analyze a general multigrid method with aggressive coarsening and polynomial smoothing. We use a special polynomial smoother that originates in the context of the smoothed aggregation method. Assuming the degree of the smoothing polynomial is, on each level , at least , we prove a convergence result independent of . The suggested smoother is cheaper than the overlapping Schwarz method that allows to prove the same result. Moreover, unlike in the case of the overlapping Schwarz method, analysis...
In this article, we present a mathematical model and numerical method for surface reconstruction from 3D point cloud data, using the level-set method. The presented method solves surface reconstruction by the computation of the distance function to the shape, represented by the point cloud, using the so called Fast Sweeping Method, and the solution of advection equation with curvature term, which creates the evolution of an initial condition to the final state. A crucial point for efficiency is...
We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive fronts, spatially very localized. A new resolution strategy was recently introduced ? that combines...
In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems...
In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems...
Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier’s trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods....
This paper presents and summarize our results concerning the nonlinear tensor diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5]. First we briefly describe the diffusion model and provide its basic properties. Further we build a semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh. This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamondshaped polygon, see [1]. We...
2000 Mathematics Subject Classification: 65M06, 65M12.The paper is devoted to pricing options characterized by discontinuities in the initial conditions of the respective Black-Scholes partial differential equation. Finite difference schemes are examined to highlight how discontinuities can generate numerical drawbacks such as spurious oscillations. We analyze the drawbacks of the Crank-Nicolson scheme that is most frequently used numerical method in Finance because of its second order accuracy....
Stability and convergence of the linear semi-implicit discrete duality finite volume (DDFV) numerical scheme in 2D for the solution of the regularized curvature driven level set equation is proved. Numerical experiments concerning comparison with exact solution and image filtering problem using proposed scheme are included.
In this paper we introduce a coupled systems of kinetic equations for the linearized Carleman model. We then study the existence theory and the asymptotic behaviour of the resulting coupled problem. In order to solve the coupled problem we propose to use the time marching algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results confirming the theory are then presented.