Displaying 81 – 100 of 310

Showing per page

A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems

Kučera, Václav (2010)

Programs and Algorithms of Numerical Mathematics

This work is concerned with the introduction of a new numerical scheme based on the discontinuous Galerkin (DG) method. We propose to follow the methodology of higher order finite volume schemes and introduce a reconstruction operator into the DG scheme. This operator constructs higher order piecewise polynomial reconstructions from the lower order DG scheme. Such a procedure was proposed already in [2] based on heuristic arguments, however we provide a rigorous derivation, which justifies the increased...

A new two-dimensional shallow water model including pressure effects and slow varying bottom topography

Stefania Ferrari, Fausto Saleri (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...

A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography

Stefania Ferrari, Fausto Saleri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...

A note on ( 2 𝖪 + 1 ) -point conservative monotone schemes

Huazhong Tang, Gerald Warnecke (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

First–order accurate monotone conservative schemes have good convergence and stability properties, and thus play a very important role in designing modern high resolution shock-capturing schemes. Do the monotone difference approximations always give a good numerical solution in sense of monotonicity preservation or suppression of oscillations? This note will investigate this problem from a numerical point of view and show that a ( 2 K + 1 ) -point monotone scheme may give an oscillatory solution even though...

A note on (2K+1)-point conservative monotone schemes

Huazhong Tang, Gerald Warnecke (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

First–order accurate monotone conservative schemes have good convergence and stability properties, and thus play a very important role in designing modern high resolution shock-capturing schemes. Do the monotone difference approximations always give a good numerical solution in sense of monotonicity preservation or suppression of oscillations? This note will investigate this problem from a numerical point of view and show that a (2K+1)-point monotone scheme may give an oscillatory solution even...

A note on the rate of convergence for Chebyshev-Lobatto and Radau systems

Elías Berriochoa, Alicia Cachafeiro, Jaime Díaz, Eduardo Martínez (2016)

Open Mathematics

This paper is devoted to Hermite interpolation with Chebyshev-Lobatto and Chebyshev-Radau nodal points. The aim of this piece of work is to establish the rate of convergence for some types of smooth functions. Although the rate of convergence is similar to that of Lagrange interpolation, taking into account the asymptotic constants that we obtain, the use of this method is justified and it is very suitable when we dispose of the appropriate information.

A Numerical Approach of the sentinel method for distributed parameter systems

Aboubakari Traore, Benjamin Mampassi, Bisso Saley (2007)

Open Mathematics

In this paper we consider the problem of detecting pollution in some non linear parabolic systems using the sentinel method. For this purpose we develop and analyze a new approach to the discretization which pays careful attention to the stability of the solution. To illustrate convergence properties we give some numerical results that present good properties and show new ways for building discrete sentinels.

Currently displaying 81 – 100 of 310