Displaying 81 – 100 of 1411

Showing per page

A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations

Yun-Bo Yang, Yao-Lin Jiang, Qiong-Xiang Kong (2019)

Applications of Mathematics

A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order...

A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two

Alexandre Caboussat, Roland Glowinski, Danny C. Sorensen (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We address in this article the computation of the convex solutions of the Dirichlet problem for the real elliptic Monge − Ampère equation for general convex domains in two dimensions. The method we discuss combines a least-squares formulation with a relaxation method. This approach leads to a sequence of Poisson − Dirichlet problems and another sequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure are used for the...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...

A localized orthogonal decomposition method for semi-linear elliptic problems

Patrick Henning, Axel Målqvist, Daniel Peterseim (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we propose and analyze a localized orthogonal decomposition (LOD) method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. This Galerkin-type method is based on a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations on small patches that have a diameter of order H | log (H) | where H is the coarse mesh size. Without any assumptions...

A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam

Carlo Lovadina, David Mora, Rodolfo Rodríguez (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to develop a finite element method which allows computing the buckling coefficients and modes of a non-homogeneous Timoshenko beam. Studying the spectral properties of a non-compact operator, we show that the relevant buckling coefficients correspond to isolated eigenvalues of finite multiplicity. Optimal order error estimates are proved for the eigenfunctions as well as a double order of convergence for the eigenvalues using classical abstract spectral approximation theory...

A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam

Carlo Lovadina, David Mora, Rodolfo Rodríguez (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to develop a finite element method which allows computing the buckling coefficients and modes of a non-homogeneous Timoshenko beam. Studying the spectral properties of a non-compact operator, we show that the relevant buckling coefficients correspond to isolated eigenvalues of finite multiplicity. Optimal order error estimates are proved for the eigenfunctions as well as a double order of convergence for the eigenvalues using classical abstract spectral approximation theory...

A matching of singularities in domain decomposition methods for reaction-diffusion problems with discontinuous coefficients

Chokri Chniti (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we certify that the same approach proposed in previous works by Chniti et al. [C. R. Acad. Sci. 342 (2006) 883–886; CALCOLO 45 (2008) 111–147; J. Sci. Comput. 38 (2009) 207–228] can be applied to more general operators with strong heterogeneity in the coefficients. We consider here the case of reaction-diffusion problems with piecewise constant coefficients. The problem reduces to determining the coefficients of some transmission conditions to obtain fast convergence of domain decomposition...

A matching of singularities in domain decomposition methods for reaction-diffusion problems with discontinuous coefficients

Chokri Chniti (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we certify that the same approach proposed in previous works by Chniti et al. [C. R. Acad. Sci.342 (2006) 883–886; CALCOLO45 (2008) 111–147; J. Sci. Comput.38 (2009) 207–228] can be applied to more general operators with strong heterogeneity in the coefficients. We consider here the case of reaction-diffusion problems with piecewise constant coefficients. The problem reduces to determining the coefficients of some transmission conditions to obtain fast convergence of domain decomposition...

A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are (i) (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space W N spanned...

A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are (i) (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space WN spanned...

A mimetic discretization method for linear elasticity

Lourenco Beirão Da Veiga (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A Mimetic Discretization method for the linear elasticity problem in mixed weakly symmetric form is developed. The scheme is shown to converge linearly in the mesh size, independently of the incompressibility parameter λ, provided the discrete scalar product satisfies two given conditions. Finally, a family of algebraic scalar products which respect the above conditions is detailed.

A mixed finite element method for plate bending with a unilateral inner obstacle

Ivan Hlaváček (1994)

Applications of Mathematics

A unilateral problem of an elastic plate above a rigid interior obstacle is solved on the basis of a mixed variational inequality formulation. Using the saddle point theory and the Herrmann-Johnson scheme for a simultaneous computation of deflections and moments, an iterative procedure is proposed, each step of which consists in a linear plate problem. The existence, uniqueness and some convergence analysis is presented.

Currently displaying 81 – 100 of 1411