Displaying 961 – 980 of 2184

Showing per page

Finite element solution of the fundamental equations of semiconductor devices. II

Miloš Zlámal (2001)

Applications of Mathematics

In part I of the paper (see Zlámal [13]) finite element solutions of the nonstationary semiconductor equations were constructed. Two fully discrete schemes were proposed. One was nonlinear, the other partly linear. In this part of the paper we justify the nonlinear scheme. We consider the case of basic boundary conditions and of constant mobilities and prove that the scheme is unconditionally stable. Further, we show that the approximate solution, extended to the whole time interval as a piecewise...

Finite element variational crimes in the case of semiregular elements

Alexander Ženíšek (1996)

Applications of Mathematics

The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain Ω whose boundary Ω is formed by two circles Γ 1 , Γ 2 with the same center S 0 and radii R 1 , R 2 = R 1 + ϱ , where ϱ R 1 . On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for u = 0 are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus triangles obeying...

Finite elements methods for solving viscoelastic thin plates

Helena Růžičková, Alexander Ženíšek (1984)

Aplikace matematiky

The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by C 1 -elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.

Finite Volume Box Schemes and Mixed Methods

Jean-Pierre Croisille (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin finite volume schemes for equations in divergence form div ϕ ( u , u ) = f . The first scheme, which has been introduced in [CITE], is a generalization in two dimensions of Keller's box-scheme. The second scheme is the dual of the first one, and is a cell-centered scheme for u and the flux φ. For the first scheme, the two trial finite element spaces are the nonconforming space of Crouzeix-Raviart for the primal unknown u...

Finite volume methods for elliptic PDE’s : a new approach

Panagiotis Chatzipantelidis (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a new formulation for finite volume element methods, which is satisfied by known finite volume methods and it can be used to introduce new ones. This framework results by approximating the test function in the formulation of finite element method. We analyze piecewise linear conforming or nonconforming approximations on nonuniform triangulations and prove optimal order H 1 - norm and L 2 - norm error estimates.

Finite Volume Methods for Elliptic PDE's: A New Approach

Panagiotis Chatzipantelidis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a new formulation for finite volume element methods, which is satisfied by known finite volume methods and it can be used to introduce new ones. This framework results by approximating the test function in the formulation of finite element method. We analyze piecewise linear conforming or nonconforming approximations on nonuniform triangulations and prove optimal order H1-norm and L2-norm error estimates.

Finite volume schemes for fully non-linear elliptic equations in divergence form

Jérôme Droniou (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct finite volume schemes, on unstructured and irregular grids and in any space dimension, for non-linear elliptic equations of the p -laplacian kind: - div ( | u | p - 2 u ) = f (with 1 < p < ). We prove the existence and uniqueness of the approximate solutions, as well as their strong convergence towards the solution of the PDE. The outcome of some numerical tests are also provided.

Finite volume schemes for fully non-linear elliptic equations in divergence form

Jérôme Droniou (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct finite volume schemes, on unstructured and irregular grids and in any space dimension, for non-linear elliptic equations of the p-Laplacian kind: -div(|∇u|p-2∇u) = ƒ (with 1 < p < ∞). We prove the existence and uniqueness of the approximate solutions, as well as their strong convergence towards the solution of the PDE. The outcome of some numerical tests are also provided.

Finite volume schemes for the p-laplacian on cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the finite volume approximation of the p-laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh’s interfaces is needed in order to discretize the p-laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally...

Finite volume schemes for the p-Laplacian on Cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the finite volume approximation of the p-Laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh's interfaces is needed in order to discretize the p-Laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally...

Currently displaying 961 – 980 of 2184