On the problem of stability for near to integrable Hamiltonian systems.
We report our recent results concerning integrability of Hamiltonian systems governed by Hamilton’s function of the form , where the potential V is a finite sum of homogeneous components. In this paper we show how to find, in the differential Galois framework, computable necessary conditions for the integrability of such systems. Our main result concerns potentials of the form , where and are homogeneous functions of integer degrees k and K > k, respectively. We present examples of integrable...
By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.
In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.
The present paper deals with the KAM-theory conditions for systems describing the motion of a particle in central field.