Spontaneously broken symmetries
The homogeneity properties of two different families of geometric objects playing a crutial role in the non-autonomous first-order dynamics - semisprays and dynamical connections on - are studied. A natural correspondence between sprays and a special class of homogeneous connections is presented.
In some preceding works we consider a class of Boltz optimization problems for Lagrangian mechanical systems, where it is relevant a line , regarded as determined by its (variable) curvature function of domain . Assume that the problem is regular but has an impulsive monotone character in the sense that near each of some points to is monotone and is very large. In [10] we propose a procedure belonging to the theory of impulsive controls, in order to simplify into a structurally...
Soit une variété différentiable de dimension paire munie d’une 2-forme différentielle fermée générique . L’apparition éventuelle d’un lieu de dégénérescence du rang de est l’obstacle à ce que soit une structure symplectique. Nous étudions les propriétés géométriques de et nous caractérisons l’algèbre des hamiltoniennes admissibles de i.e. les fonctions différentiables qui possèdent un champ hamiltonien sur .
In the present paper we seek the bounce trajectories in a convex set which assume assigned positions in two fixed time instants. We find sufficient conditions in order to obtain the existence of infinitely many bounce trajectories.
The spherical version of the two-dimensional central harmonic oscillator, as well as the spherical Kepler (Schrödinger) potential, are superintegrable systems with quadratic constants of motion. They belong to two different spherical "Smorodinski-Winternitz" families of superintegrable potentials. A new superintegrable oscillator have been recently found in S². It represents the spherical version of the nonisotropic 2:1 oscillator and it also belongs to a spherical family of quadratic superintegrable...
Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles . Nous construisons une stratification et une décomposition cellulaire analytique de , puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue...
Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.