Displaying 201 – 220 of 2623

Showing per page

A short note on incremental thermoelasticity.

Ramón Quintanilla de la Torre (1983)

Stochastica

The equations of classical thermoelasticity have been extensively studied [1], [2], [3], [4], [5]. Only more recently the equations when the initial state is at non-uniform temperature have been established [6], and a well-posedness theorem proved by the author and C. Navarro for these equations [7]. Our goal here is to make a brief comment about dissipation in this last case of an initial state with non-uniform temperature.

A simple and efficient scheme for phase field crystal simulation

Matt Elsey, Benedikt Wirth (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose an unconditionally stable semi-implicit time discretization of the phase field crystal evolution. It is based on splitting the underlying energy into convex and concave parts and then performing H-1 gradient descent steps implicitly for the former and explicitly for the latter. The splitting is effected in such a way that the resulting equations are linear in each time step and allow an extremely simple implementation and efficient solution. We provide the associated stability and error...

A simple mechanical model to analyse the rocking and sliding response of rigid blocks to earthquakes

Giancarlo Bilotti, Leonardo Giliberti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In order to study the effects of earthquakes on tombstones and monumental columns in recent years the dynamical analysis of rigid blocks subjected to ground accelerations has interested many researchers. Mainly, the rocking motion has been investigated and many numerical difficulties have been pointed out in such analysis [1-2-3-4]. Some computational advantages can be obtained by modelling the bonding between two blocks or between block and foundation by means of an elastic layer of Winkler's springs...

A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation

Ricardo Costa, Gaspar J. Machado, Stéphane Clain (2015)

International Journal of Applied Mathematics and Computer Science

A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for onedimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is...

A spectral study of an infinite axisymmetric elastic layer

Lahcène Chorfi (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present here a theoretical study of eigenmodes in axisymmetric elastic layers. The mathematical modelling allows us to bring this problem to a spectral study of a sequence of unbounded self-adjoint operators A n , n , in a suitable Hilbert space. We show that the essential spectrum of A n is an interval of type [ γ , + [ and that, under certain conditions on the coefficients of the medium, the discrete spectrum is non empty.

A spectral study of an infinite axisymmetric elastic layer

Lahcène Chorfi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present here a theoretical study of eigenmodes in axisymmetric elastic layers. The mathematical modelling allows us to bring this problem to a spectral study of a sequence of unbounded self-adjoint operators An, n , in a suitable Hilbert space. We show that the essential spectrum of An is an interval of type [ γ , + [ and that, under certain conditions on the coefficients of the medium, the discrete spectrum is non empty.

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A study of a unilateral and adhesive contact problem with normal compliance

Arezki Touzaline (2014)

Applicationes Mathematicae

The aim of this paper is to study a quasistatic unilateral contact problem between an elastic body and a foundation. The constitutive law is nonlinear and the contact is modelled with a normal compliance condition associated to a unilateral constraint and Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation...

Currently displaying 201 – 220 of 2623