Loading [MathJax]/extensions/MathZoom.js
- Subjects
- 74-XX Mechanics of deformable solids
Nei continui bidimensionali isotropi in fase fessurata si dimostra, nella sola ipotesi che le linee di rottura rappresentino univocamente il meccanismo di collasso, la impossibilità di ottenere un moltiplicatore ottimale del carico. La configurazione reale può essere definita considerando anche la capacità deformativa del continuo in esame.
In the present context the variation is performed keeping the deformed configuration fixed while a suitable material stress tensor and the material coordinates are required to vary independently. The variational principle turns out to be equivalent to an equilibrium problem of placements and tractions prescribed at the boundary of a body of finite extent.
In the case of an elastic strip we exhibit two properties of
dispersion curves λn,n ≥ 1, that were not pointed out
previously. We show cases where λ'n(0) = λ''n(0) = λ'''n(0) = 0 and we point out that these curves are not automatically monotoneous on
. The non monotonicity was an open question (see [2],
for example) and, for the first time, we give a rigourous answer. Recall the
characteristic property of the dispersion curves: {λn(p);n ≥ 1} is
the set of eigenvalues of Ap, counted with their...
A summary of recent results concerning the modelling as well as the variational and numerical analysis of frictionless contact problems for viscoplastic materials are presented. The contact is modelled with the Signorini or normal compliance conditions. Error estimates for the fully discrete numerical scheme are described, and numerical simulations based on these schemes are reported.
In this work, we consider the quasistatic frictionless contact problem between a
viscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelastic
constitutive law is employed to model the piezoelectric material and the normal compliance
condition is used to model the contact. The variational formulation is derived in a form
of a coupled system for the displacement and electric potential fields. An existence and
uniqueness result is recalled. Then, a fully discrete scheme...
This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient discretization....
This paper presents the numerical analysis for a
variational formulation of rate-independent phase transformations
in elastic solids due to Mielke et al. The new model itself
suggests an implicit time-discretization which is combined with the
finite element method in space.
A priori error estimates are established for the
quasioptimal spatial approximation of the stress field
within one time-step. A posteriori
error estimates motivate an
adaptive mesh-refining algorithm for efficient...
Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates...
This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc:= . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD)...
This paper is concerned with the dual formulation of the interface problem
consisting of a linear partial differential equation with variable coefficients
in some bounded Lipschitz domain Ω in (n ≥ 2)
and the Laplace equation with some radiation condition in the
unbounded exterior domain Ωc := .
The two problems are coupled by transmission and
Signorini contact conditions on the interface Γ = ∂Ω.
The exterior part of the
interface problem is rewritten using a Neumann to Dirichlet mapping...
A new class of history-dependent quasivariational inequalities was recently studied in [M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471–491]. Existence, uniqueness and regularity results were proved and used in the study of several mathematical models which describe the contact between a deformable body and an obstacle. The aim of this paper is to provide numerical analysis of the quasivariational inequalities...
Currently displaying 41 –
60 of
98