Displaying 841 – 860 of 2633

Showing per page

Extended Hashin-Shtrikman variational principles

Petr Procházka, Jiří Šejnoha (2004)

Applications of Mathematics

Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded materials, which are typically present in particulate, layered, or rock bodies. These parameters may be realized in different ways, e.g., by prestressing, temperature changes, effects of wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formulation of elasticity is presented, and the...

Extended irreversible thermodynamics in hypoelasticity

Sebastiano Giambò, Annunziata Palumbo (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The constitutive equations of rate type for a class of thermo-hypo-elastic materials are derived within the framework of the extended irreversible thermodynamics.

External approximation of first order variational problems via W-1,p estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of Γ-convergence theory.

Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening

Claudia Comi, Giulio Maier (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution...

Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids

Giulio Maier, Giorgio Novati (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material stability"...

FER/SubDomain : an integrated environment for finite element analysis using object-oriented approach

Zhi-Qiang Feng, Jean-Michel Cros (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

FER/SubDomain: An Integrated Environment for Finite Element Analysis using Object-Oriented Approach

Zhi-Qiang Feng, Jean-Michel Cros (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity

Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider linear elliptic systems which arise in coupled elastic continuum mechanical models. In these systems, the strain tensor εP := sym (P-1∇u) is redefined to include a matrix valued inhomogeneity P(x) which cannot be described by a space dependent fourth order elasticity tensor. Such systems arise naturally in geometrically exact plasticity or in problems with eigenstresses. The tensor field P induces a structural change of the elasticity equations. For such a model the FETI-DP method is...

FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity

Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider linear elliptic systems which arise in coupled elastic continuum mechanical models. In these systems, the strain tensor εP := sym (P-1∇u) is redefined to include a matrix valued inhomogeneity P(x) which cannot be described by a space dependent fourth order elasticity tensor. Such systems arise naturally in geometrically exact plasticity or in problems with eigenstresses. The tensor field P induces a structural change of the elasticity equations. For such a model the FETI-DP method is...

Finite difference scheme for the Willmore flow of graphs

Tomáš Oberhuber (2007)

Kybernetika

In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...

Currently displaying 841 – 860 of 2633