Displaying 21 – 40 of 91

Showing per page

Characterization of the limit load in the case of an unbounded elastic convex

Adnene Elyacoubi, Taieb Hadhri (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we consider a solid body Ω 3 constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces λ f and a density of forces λ g acting on the boundary where the real λ is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by λ ¯ beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...

Characterization of the limit load in the case of an unbounded elastic convex

Adnene Elyacoubi, Taieb Hadhri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we consider a solid body Ω 3 constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces λ f and a density of forces λ g acting on the boundary where the real λ is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by λ ¯ beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...

Collisions and fractures: a model in S B D

Elena Bonetti, Michel Frémond (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We investigate collisions (assumed to be instantaneous) and fractures of three-dimensional solids. Equations of motion and constitutive laws provide a set of partial differential equations, whose corresponding variational problem may be solved in the space of special functions with bounded deformations ( S B D ), exploiting the direct method of calculus of variations.

Curl bounds grad on SO(3)

Ingo Münch, Patrizio Neff (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461–1506; John, Comme Pure Appl. Math. 14 (1961) 391–413; Reshetnyak, Siberian Math. J. 8 (1967) 631–653)] as well as an associated linearized theorem...

Curl bounds Grad on SO(3)

Patrizio Neff, Ingo Münch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying...

Epitaxially strained elastic films: the case of anisotropic surface energies

Marco Bonacini (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In the context of a variational model for the epitaxial growth of strained elastic films, we study the effects of the presence of anisotropic surface energies in the determination of equilibrium configurations. We show that the threshold effect that describes the stability of flat morphologies in the isotropic case remains valid for weak anisotropies, but is no longer present in the case of highly anisotropic surface energies, where we show that the flat configuration is always a local minimizer...

Evolutionary problems in non-reflexive spaces

Martin Kružík, Johannes Zimmer (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Rate-independent problems are considered, where the stored energy density is a function of the gradient. The stored energy density may not be quasiconvex and is assumed to grow linearly. Moreover, arbitrary behaviour at infinity is allowed. In particular, the stored energy density is not required to coincide at infinity with a positively 1-homogeneous function. The existence of a rate-independent process is shown in the so-called energetic formulation.

Existence of a solution for a nonlinearly elastic plane membrane “under tension”

Daniel Coutand (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A justification of the two-dimensional nonlinear “membrane” equations for a plate made of a Saint Venant-Kirchhoff material has been given by Fox et al. [9] by means of the method of formal asymptotic expansions applied to the three-dimensional equations of nonlinear elasticity. This model, which retains the material-frame indifference of the original three dimensional problem in the sense that its energy density is invariant under the rotations of 3 , is equivalent to finding the critical points...

Existence theorem for nonlinear micropolar elasticity

Josip Tambača, Igor Velčić (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we give an existence theorem for the equilibrium problem for nonlinear micropolar elastic body. We consider the problem in its minimization formulation and apply the direct methods of the calculus of variations. As the main step towards the existence theorem, under some conditions, we prove the equivalence of the sequential weak lower semicontinuity of the total energy and the quasiconvexity, in some variables, of the stored energy function.

General method of regularization. I: Functionals defined on BD space

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.

General method of regularization. II: Relaxation proposed by suquet

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.

General method of regularization. III: The unilateral contact problem

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...

Currently displaying 21 – 40 of 91