Homogénéisation de frontières par épi-convergence en élasticité linéaire
This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.
In this work, we analyze hierarchic hp-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the hp-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness ε tends to zero, the hp-discretization is consistent with the three-dimensional solution to any power of ε in...
L'ipotesi di contatto monolaterale tra strutture di fondazione e terreno assume un significato importante in tutti quei problemi tecnici, nei quali l'area di contatto tra struttura e fondazione diviene percentualmente piccola, sia per la rigidezza relativa dei corpi a contatto, sia per la condizione di carico, soprattutto in presenza di carichi ribaltanti come possono adesempio essere le forze sismiche. In questo contesto sono stati sviluppati negli ultimi anni diversi studi, che riguadano però...
Si considera un modello discreto (per elementi finiti) di un solido o un sistema strutturale perfettamente elastoplastico, con condizioni di snervamento «linearizzate a tratti», nell’ipotesi di olonomia assunta per processi di caricamento proporzionali. Supponendo noti su base sperimentale certi spostamenti sotto assegnate azioni esterne, si formula il problema di identificare i limiti di snervamento, ossia le resistenze locali. Si dimostra che questo problema inverso di meccanica strutturale non...
In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...
In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...