The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 221 –
240 of
341
We consider the magnetic induction equation for the evolution of a
magnetic field in a plasma where the velocity is given. The aim is
to design a numerical scheme which also handles the divergence
constraint in a suitable manner. We design and analyze an upwind
scheme based on the symmetrized version of the equations in the
non-conservative form. The scheme is shown to converge to a weak
solution of the equations. Furthermore, the discrete divergence
produced by the scheme is shown to be...
We review in this paper a class of schemes for the numerical simulation of compressible flows. In order to ensure the stability of the discretizations in a wide range of Mach numbers and introduce sufficient decoupling for the numerical resolution, we choose to implement and study pressure correction schemes on staggered meshes. The implicit version of the schemes is also considered for the theoretical study. We give both algorithms for the barotropic Navier-Stokes equations, for the full Navier-Stokes...
We present an analytical solution of plane motion for a Bingham fluid initially at rest subjected to a suddenly applied constant pressure gradient. Using the Laplace transform we obtain expressions which allow a direct easy calculation of the velocity, of the plug thickness and of the rate of flow as function of time.
Most of the paper deals with the application of the moving plane method to different questions concerning stationary accumulations of isentropic gases. The first part compares the concepts of stationarity arising from the points of view of dynamics and the calculus of variations. Then certain stationary solutions are shown to be unstable. Finally, using the moving plane method, a short proof of the existence of energy-minimizing gas balls is given.
In this paper we are concerned with the steady Boussinesq system with mixed boundary conditions. The boundary conditions for fluid may include Tresca slip, leak, one-sided leak, velocity, vorticity, pressure and stress conditions together and the conditions for temperature may include Dirichlet, Neumann and Robin conditions together. For the problem involving the static pressure and stress boundary conditions, it is proved that if the data of the problem are small enough, then there exists a solution...
We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier-Stokes-Fourier system. We assume that the pressure is given by the constitutive equation , where is the density and is the temperature. For , we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness of the...
Currently displaying 221 –
240 of
341