The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 241 –
260 of
341
We prove the existence of solution in the class H²(Ω) × H¹(Ω) to the steady compressible Oseen system with slip boundary conditions in a two dimensional, convex domain with boundary of class . The method is to regularize a weak solution obtained via the Galerkin method. The problem of regularization is reduced to the problem of solvability of a certain transport equation by application of the Helmholtz decomposition. The method works under an additional assumption on the geometry of the boundary....
We consider the steady plane flow of certain classes of viscoelastic fluids in exterior domains with a non-zero velocity prescribed at infinity. We study existence as well as asymptotic behaviour of solutions near infinity and show that for sufficiently small data the solution decays near infinity as fast as the fundamental solution to the Oseen problem.
We consider plasma tearing mode instabilities when the resistivity depends on a
flux function (ψ), for the plane slab model.
This problem, represented by the MHD equations, is studied as a bifurcation
problem. For
so doing, it is written in the form (I(.)-T(S,.)) = 0, where
T(S,.) is a compact operator in a suitable space and S is the bifurcation
parameter.
In this work, the resistivity is not assumed to be a given quantity (as usually
done in previous papers, see [1,2,5,7,8,9,10], but it
depends...
In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder () where denotes the cylindrical co-ordinates in is considered. The motion is with swirl (i.e. the -component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ( in (f)) in the whole space, as the flux constant tends to , 1) ; ; 2) converges to a vortex cylinder (see...
Steady-state system of equations for incompressible, possibly non-Newtonean of the -power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain , or 3, with heat sources allowed to have a natural -structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if (for ) or if (for ).
The aim of this paper is to analyze the well posedness of the one-phase quasi-stationary Stefan problem with the Gibbs-Thomson correction in a two-dimensional domain which is a perturbation of the half plane. We show the existence of a unique regular solution for an arbitrary time interval, under suitable smallness assumptions on initial data. The existence is shown in the Besov-Slobodetskiĭ class with sharp regularity in the L₂-framework.
The numerical modeling of the fully developed Poiseuille flow of a newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...
The numerical modeling of the fully developed Poiseuille flow
of a Newtonian fluid in a square section with
slip yield boundary condition at the wall is presented.
The stick regions in outer corners and the slip region in the center
of the pipe faces are exhibited.
Numerical computations cover the complete range of the dimensionless number describing
the slip yield effect, from a full slip to a full stick flow regime.
The resolution of variational inequalities
describing the flow is based on the...
Stimuli-responsive polymers result in
on-demand regulation of properties and functioning of various
nanoscale systems. In particular, they allow stimuli-responsive
control of flow rates through membranes and nanofluidic devices
with submicron channel sizes. They also allow regulation of drug
release from nanoparticles and nanofibers in response to
temperature or pH variation in the surrounding medium. In the
present work two relevant mathematical models are introduced to
address precipitation-driven...
This work aims at introducing modelling, theoretical and numerical studies related to a new downscaling technique applied to computational fluid dynamics.
Our method consists in building a local model, forced by large scale information computed thanks to a classical numerical weather predictor.
The local model, compatible with the Navier-Stokes equations, is used
for the small scale computation (downscaling) of the considered
fluid. It is
inspired by Pope's works on turbulence, and consists in...
Mathematics Subject Classification: 26A33, 76M35, 82B31A stochastic solution is constructed for a fractional generalization of
the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses
a fractional generalization of the branching exponential process and propagation
processes which are spectral integrals of Levy processes.
Currently displaying 241 –
260 of
341