Sur les mouvements tridimensionnels d'un gaz parfait.
Dans cet article nous présentons quelques problèmes et résultats d’homogénéisation non locale pour certaines équations de type dégénéré. Nous considérons des équations de transport, une équation des ondes dégénérée et une équation différentielle de Riccati, et nous décrivons dans chacun des cas les effets non locaux induits par homogénéisation. Nous donnons aussi quelques résultats sur l’analyse mathématique des équations des fluides miscibles en milieu poreux.
Dans cet article on étudie la régularité analytique (ou Gevrey) des courbes intégrales de champs de vecteurs solutions non nécessairement lipschitziennes du système d’Euler incompressible. On en déduit que le front d’onde analytique (ou Gevrey) de ces solutions est localisé dans la variété caractéristique de l’opérateur linéarisé.