Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows
An optimal control problem for a model for stationary, low Mach number, highly nonisothermal, viscous flows is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. The existence of solutions of a boundary value problem for the model equations is established as is the existence of solutions of the optimal control problem. Then, a derivation of an optimality system, i.e., a boundary value problem from...