Invariants of characteristics of some systems of partial differential equations.
These past few years, new types of computational architectures based on graphics processors have emerged. These technologies provide important computational resources at low cost and low energy consumption. Lots of developments have been done around GPU and many tools and libraries are now available to implement efficiently softwares on those architectures.This article contains the two contributions of the mini-symposium about GPU organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay),...
Dans cet article, on étudie le système de Boussinesq décrivant le phénomène de convection dans un fluide incompressible et visqueux. Ce système est composé des équations de Navier-Stokes incompressibles avec un terme de force verticale dont l’amplitude est transportée sans dissipationpar le flot du champ de vitesses. On montre que les résultats classiques pour le système de Navier-Stokes standard demeurent vrais pour le système de Boussinesq bien qu’il n’y ait pas d’amortissement sur le terme de...
Les effets dispersifs permettent de passer à la limite dans le système d’Euler compressible 2-D isentropique, quand le nombre de Mach tend vers zéro, même si les données initiales ne sont pas uniformément régulières.Ceci mène à des résultats de convergence vers des solutions non régulières du système d’Euler incompressible, comme les poches de tourbillon ou les solutions de Yudovich.
This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let be the corresponding linearly independent (normalized) eigenfunctions...
In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the -d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.
The local existence and the uniqueness of solutions for equations describing the motion of viscous compressible heat-conducting fluids in a domain bounded by a free surface is proved. First, we prove the existence of solutions of some auxiliary problems by the Galerkin method and by regularization techniques. Next, we use the method of successive approximations to prove the local existence for the main problem.
Local existence of solutions is proved for equations describing the motion of a viscous compressible barotropic and self-gravitating fluid in a domain bounded by a free surface. First by the Galerkin method and regularization techniques the existence of solutions of the linearized momentum equations is proved, next by the method of successive approximations local existence to the nonlinear problem is shown.
Local existence of solutions for the equations describing the motion of a magnetohydrodynamic compressible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. First by the Galerkin method and regularization techniques the existence of solutions of the linearized equations is proved, next by the method of successive aproximations local existence to the nonlinear problem is shown....
Local existence of solutions is proved for equations describing the motion of a magnetohydrodynamic incompressible fluid in a domain bounded by a free surface. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. First by the Galerkin method and regularization techniques the existence of solutions of the linarized equations is proved; next by the method of successive aproximations the local existence is shown for the nonlinear problem....
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given , the system can be driven at rest and the structure to its reference configuration at time . To show this result, we first consider a linearized system....
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given T > 0, the system can be driven at rest and the structure to its reference configuration at time T. To show this result, we first consider a linearized system....
This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain without the standard compatibility conditions.
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes...
In this note, we give an overview of the authors’ paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Kučera [3] as well as the class of RS-IMEX schemes [8,5,1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of...