Loading [MathJax]/extensions/MathZoom.js
Displaying 41 –
60 of
617
We study the Landau-Lifshitz model for the energy of multi-scale transition layers – called “domain walls” – in soft ferromagnetic films. Domain walls separate domains of constant magnetization vectors that differ by an angle . Assuming translation invariance tangential to the wall, our main result is the rigorous derivation of a reduced model for the energy of the optimal transition layer, which in a certain parameter regime confirms the experimental, numerical and physical predictions: The...
It is known that the vector stop operator with a convex closed characteristic of class is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping is Lipschitz continuous on the boundary of . We prove that in the regular case, this condition is also necessary.
A system of ordinary differential equations modelling an electric circuit with a thermistor is considered. Qualitative properties of solution are studied, in particular, the existence and nonexistence of time-periodic solutions (the Hopf bifurcation).
The paper deals with the application of a non-conforming domain
decomposition method
to the problem of the computation of induced currents in electric engines
with moving conductors.
The eddy currents model is considered as a quasi-static
approximation of Maxwell
equations and we study its two-dimensional formulation with either the
modified magnetic vector potential or the magnetic field as primary variable.
Two discretizations are proposed, the first one based on curved finite
elements
and the...
The paper deals with the application of a non-conforming domain decomposition method to the problem of the computation of induced currents in electric engines with moving conductors. The eddy currents model is considered as a quasi-static approximation of Maxwell equations and we study its two-dimensional formulation with either the modified magnetic vector potential or the magnetic field as primary variable. Two discretizations are proposed, the first one based on curved finite elements and the...
We present in this paper a stability study concerning finite volume schemes
applied to the two-dimensional Maxwell system, using rectangular or triangular
meshes. A stability condition is proved for the
first-order upwind scheme on a rectangular mesh. Stability comparisons
between the Yee scheme and the finite volume formulation are proposed.
We also compare the stability domains obtained when considering the
Maxwell system and the convection equation.
A stochastic generalized Born (GB) solver is presented which can give predictions of energies arbitrarily close to those that would be given by exact effective GB radii, and, unlike analytical GB solvers, these errors are Gaussian with estimates that can be easily obtained from the algorithm. This method was tested by computing the electrostatic solvation energies (ΔGsolv) and the electrostatic binding energies (ΔGbind) of a set of DNA-drug complexes, a set of protein-drug complexes, a set of protein-protein...
The construction of a well-conditioned integral equation for iterative solution of scattering
problems with a variable Leontovitch boundary condition is proposed. A suitable parametrix is obtained by
using a new unknown and an approximation of the transparency condition. We prove the well-posedness of the equation for any wavenumber.
Finally, some numerical comparisons with well-tried method prove the efficiency of the new formulation.
We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.
Currently displaying 41 –
60 of
617