Multidisciplinary design optimization of film-cooled gas turbine blades.
Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.
The existence of a solution of the two - dimensional heat conduction equation in a semi-infinite strip, under mixed boundary condition, is discussed.
The hot-wire method, based on the recording of the temperature development in time in a testing sample, supplied by a probe with its own thermal source, is useful to evaluate the thermal conductivity of materials under extremal loads, in particular in refractory brickworks. The formulae in the technical standards come from the analytical solution of the non-stationary equation of heat conduction in cylindric (finally only polar) coordinates for a simplified formulation of boundary conditions, neglecting...
We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.
We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.
We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.
The existence of a weak solution of a non-stationary free boundary transmission problem arising in the production of industrial materials is established. The process is governed by a coupled system involving the Navier--Stokes equations and a non-linear heat equation. The stationary case was studied in [7].
We deal with a Penrose-Fife type model for phase transition. We assume a rather general constitutive low for the heat flux and treat the Dirichlet and Neumann boundary condition for the temperature. Some of our proofs apply to different types of boundary conditions as well and improve some results existing in the literature.
The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...
We consider the full Navier-Stokes-Fourier system of equations on an unbounded domain with prescribed nonvanishing boundary conditions for the density and temperature at infinity. The topic of this article continues author’s previous works on existence of the Navier-Stokes-Fourier system on nonsmooth domains. The procedure deeply relies on the techniques developed by Feireisl and others in the series of works on compressible, viscous and heat conducting fluids.