A partial solution for Feynman's problem – a new derivation of the Weyl equation.
Let be a field. The generalized Leibniz rule for higher derivations suggests the definition of a coalgebra for any positive integer . This is spanned over by , and has comultiplication and counit defined by and (Kronecker’s delta) for any . This note presents a representation of the coalgebra by using smooth spaces and a procedure of microlocalization. The author gives an interpretation of this result following the principles of the quantum theory of geometric spaces.
We define and analyze Toeplitz operators whose symbols are the elements of the complex quantum plane, a non-commutative, infinite dimensional algebra. In particular, the symbols do not come from an algebra of functions. The process of forming operators from non-commuting symbols can be considered as a second quantization. To do this we construct a reproducing kernel associated with the quantum plane. We also discuss the commutation relations of creation and annihilation operators which are defined...