Page 1 Next

Displaying 1 – 20 of 75

Showing per page

D -posets

František Kôpka, Ferdinand Chovanec (1994)

Mathematica Slovaca

Decompositions of Beurling type for E₀-semigroups

Rolf Gohm (2006)

Banach Center Publications

We define tensor product decompositions of E₀-semigroups with a structure analogous to a classical theorem of Beurling. Such decompositions can be characterized by adaptedness and exactness of unitary cocycles. For CCR-flows we show that such cocycles are convergent.

Deformation on phase space.

Oscar Arratia, M.ª Angeles Martín Mínguez, María Angeles del Olmo (2002)

RACSAM

El trabajo que presentamos constituye una revisión de varios procedimientos de cuantización basados en un espacio de fases clásico M. Estos métodos consideran a la mecánica cuántica como una "deformación" de la mecánica clásica por medio de la "transformación" del álgebra conmutativa C∞(M) en una nueva álgebra no conmutativa C∞(M)ħ. Todas estas ideas conducen de modo natural a los grupos cuánticos como deformación (o cuantización en un sentido amplio) de los grupos de Poisson-Lie, lo cual también...

Deformations of Batalin-Vilkovisky algebras

Olga Kravchenko (2000)

Banach Center Publications

We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of a Batalin-Vilkovisky algebra. While such an operator of order 2 defines a Gerstenhaber (Lie) algebra structure on A, an operator of an order higher than 2 (Koszul-Akman definition) leads to the structure of a strongly homotopy Lie algebra ( L -algebra) on A. This allows us to give a definition of a Batalin-Vilkovisky algebra up to homotopy. We also make a conjecture which is a...

Deformed commutators on comodule algebras over coquasitriangular Hopf algebras

Zhongwei Wang, Guoyin Zhang, Liangyun Zhang (2015)

Colloquium Mathematicae

We construct quantum commutators on comodule algebras over coquasitriangular Hopf algebras, so that they are quantum group coinvariant and have the generalized antisymmetry and Leibniz properties. If the coquasitriangular Hopf algebra is additionally cotriangular, then the quantum commutators satisfy a generalized Jacobi identity, and turn the comodule algebra into a quantum Lie algebra. Moreover, we investigate the projective and injective dimensions of some Doi-Hopf modules over a quantum commutative...

Currently displaying 1 – 20 of 75

Page 1 Next