Page 1 Next

Displaying 1 – 20 of 83

Showing per page

Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras

Martin Kalina (2010)

Kybernetika

If element z of a lattice effect algebra ( E , , 0 , 1 ) is central, then the interval [ 0 , z ] is a lattice effect algebra with the new top element z and with inherited partial binary operation . It is a known fact that if the set C ( E ) of central elements of E is an atomic Boolean algebra and the supremum of all atoms of C ( E ) in E equals to the top element of E , then E is isomorphic to a subdirect product of irreducible effect algebras ([18]). This means that if there exists a MacNeille completion E ^ of E which is its extension...

Many-body aspects of approach to equilibrium

Eric Carlen, M. C. Carvalho, Michael Loss (2000)

Journées équations aux dérivées partielles

Kinetic theory and approach to equilibrium is usually studied in the realm of the Boltzmann equation. With a few notable exceptions not much is known about the solutions of this equation and about its derivation from fundamental principles. In 1956 Mark Kac introduced a probabilistic model of N interacting particles. The velocity distribution is governed by a Markov semi group and the evolution of its single particle marginals is governed (in the infinite particle limit) by a caricature of the spatially...

Markov chains approximation of jump–diffusion stochastic master equations

Clément Pellegrini (2010)

Annales de l'I.H.P. Probabilités et statistiques

Quantum trajectories are solutions of stochastic differential equations obtained when describing the random phenomena associated to quantum continuous measurement of open quantum system. These equations, also called Belavkin equations or Stochastic Master equations, are usually of two different types: diffusive and of Poisson-type. In this article, we consider more advanced models in which jump–diffusion equations appear. These equations are obtained as a continuous time limit of martingale problems...

Mathematical and Computational Models in Tumor Immunology

F. Pappalardo, A. Palladini, M. Pennisi, F. Castiglione, S. Motta (2012)

Mathematical Modelling of Natural Phenomena

The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies:...

Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation

Jinn-Liang Liu (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Within the effective mass and nonparabolic band theory, a general framework of mathematical models and numerical methods is developed for theoretical studies of semiconductor quantum dots. It includes single-electron models and many-electron models of Hartree-Fock, configuration interaction, and current-spin density functional theory approaches. These models result in nonlinear eigenvalue problems from a suitable discretization. Cubic and quintic Jacobi-Davidson methods of block or nonblock version...

Mathematical structures behind supersymmetric dualities

Ilmar Gahramanov (2015)

Archivum Mathematicum

The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.

Currently displaying 1 – 20 of 83

Page 1 Next