-analog of Gelfand-Graev basis for the noncompact quantum algebra .
In this paper we first introduce the Fock-Guichardet formalism for the quantum stochastic (QS) integration, then the four fundamental processes of the dynamics are introduced in the canonical basis as the operator-valued measures, on a space-time σ-field , of the QS integration. Then rigorous analysis of the QS integrals is carried out, and continuity of the QS derivative D is proved. Finally, Q-adapted dynamics is discussed, including Bosonic (Q = I), Fermionic (Q = -I), and monotone (Q = O) quantum...
The notion of strong circularity for an unbounded operator is introduced and studied. Moreover, q-deformed circularity as a q-analogue of circularity is characterized in terms of the partially isometric and the positive parts of the polar decomposition.
We propose a definition of a quantised -differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of are natural examples of such algebras.
We define a -algebraic quantization of constant Dirac structures on tori and prove that -equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.
We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson pencils and...