Page 1 Next

Displaying 1 – 20 of 56

Showing per page

Natural lifting of connections to vertical bundles

Kolář, Ivan, Mikulski, Włodzimierz M. (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

One studies the flow prolongation of projectable vector fields with respect to a bundle functor of order ( r , s , q ) on the category of fibered manifolds. As a result, one constructs an operator transforming connections on a fibered manifold Y into connections on an arbitrary vertical bundle over Y . It is deduced that this operator is the only natural one of finite order and one presents a condition on vertical bundles over Y under which every natural operator in question has finite order.

Natural operations of Hamiltonian type on the cotangent bundle

Doupovec, Miroslav, Kurek, Jan (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

The authors study some geometrical constructions on the cotangent bundle T * M from the viewpoint of natural operations. First they deduce that all natural operators transforming functions on T * M into vector fields on T * M are linearly generated by the Hamiltonian vector field with respect to the canonical symplectic structure of T * M and by the Liouville vector field of T * M . Then they determine all natural operators transforming pairs of functions on T * M into functions on T * M . In this case, the main generator is...

Natural operators on frame bundles

Krupka, Michal (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

Let F 1 be a natural bundle of order r 1 ; a basis of the s -th order differential operators of F 1 with values in r 2 -th order bundles is an operator D of that type such that any other one is obtained by composing D with a suitable zero-order operator. In this article a basis is found in the following two cases: for F 1 = semi F r 1 (semi-holonomic r 1 -th order frame bundle), s = 0 , r 2 < r 1 and F 1 = F 1 ( 1 -st order frame bundle), r 2 s . The author uses here the so-called method of orbit reduction which provides one with a criterion for checking...

Natural operators transforming projectable vector fields to product preserving bundles

Tomáš, Jiří (1999)

Proceedings of the 18th Winter School "Geometry and Physics"

Let Y M be a fibered manifold over a manifold M and μ : A B be a homomorphism between Weil algebras A and B . Using the results of Mikulski and others, which classify product preserving bundle functors on the category of fibered manifolds, the author classifies all natural operators T proj Y T μ Y , where T proj Y denotes the space of projective vector fields on Y and T μ the bundle functors associated with μ .

Natural quantum operational semantics with predicates

Marek Sawerwain, Roman Gielerak (2008)

International Journal of Applied Mathematics and Computer Science

A general definition of a quantum predicate and quantum labelled transition systems for finite quantum computation systems is presented. The notion of a quantum predicate as a positive operator-valued measure is developed. The main results of this paper are a theorem about the existence of generalised predicates for quantum programs defined as completely positive maps and a theorem about the existence of a GSOS format for quantum labelled transition systems. The first theorem is a slight generalisation...

Nearly Kähler and nearly parallel G 2 -structures on spheres

Thomas Friedrich (2006)

Archivum Mathematicum

In some other context, the question was raised how many nearly Kähler structures exist on the sphere 𝕊 6 equipped with the standard Riemannian metric. In this short note, we prove that, up to isometry, there exists only one. This is a consequence of the description of the eigenspace to the eigenvalue λ = 12 of the Laplacian acting on 2 -forms. A similar result concerning nearly parallel G 2 -structures on the round sphere 𝕊 7 holds, too. An alternative proof by Riemannian Killing spinors is also indicated.

New method for computation of discrete spectrum of radical Schrödinger operator

Ivan Úlehla, Miloslav Havlíček (1980)

Aplikace matematiky

A new method for computation of eigenvalues of the radial Schrödinger operator - d 2 / d x 2 + v ( x ) , x 0 is presented. The potential v ( x ) is assumed to behave as x - 2 + ϵ if x 0 + and as x - 2 - ϵ if x + , ϵ 0 . The Schrödinger equation is transformed to a non-linear differential equation of the first order for a function z ( x , ) . It is shown that the eigenvalues are the discontinuity points of the function z ( , ) . Moreover, it is shown how to obtain an arbitrarily accurate approximation of eigenvalues. The method seems to be much more economical in comparison...

New method to solve certain differential equations

Kazimierz Rajchel, Jerzy Szczęsny (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

A new method to solve stationary one-dimensional Schroedinger equation is investigated. Solutions are described by means of representation of circles with multiple winding number. The results are demonstrated using the well-known analytical solutions of the Schroedinger equation.

New operations on partial Abelian monoids defined by preideals

Elena Vinceková (2008)

Kybernetika

We consider partial abelian monoids, in particular generalized effect algebras. From the given structures, we construct new ones by introducing a new operation , which is given by restriction of the original partial operation + with respect to a special subset called preideal. We bring some derived properties and characterizations of these new built structures, supporting the results by illustrative examples.

Currently displaying 1 – 20 of 56

Page 1 Next