-concircular vector fields and holomorphically projective mappings on Kählerian spaces
This talk is concerned with the Kolmogorov-Arnold-Moser (KAM) theorem in Gevrey classes for analytic hamiltonians, the effective stability around the corresponding KAM tori, and the semi-classical asymptotics for Schrödinger operators with exponentially small error terms. Given a real analytic Hamiltonian close to a completely integrable one and a suitable Cantor set defined by a Diophantine condition, we find a family , of KAM invariant tori of with frequencies which is Gevrey smooth with...
On a pseudo-Riemannian manifold we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on and parallel fields on the metric cone over for spinor-valued forms.