symmetric Schrödinger operators: reality of the perturbed eigenvalues.
We present an interacting particle system methodology for the numerical solving of the Lyapunov exponent of Feynman–Kac semigroups and for estimating the principal eigenvalue of Schrödinger generators. The continuous or discrete time models studied in this work consists of interacting particles evolving in an environment with soft obstacles related to a potential function . These models are related to genetic algorithms and Moran type particle schemes. Their choice is not unique. We will examine...
We present an interacting particle system methodology for the numerical solving of the Lyapunov exponent of Feynman–Kac semigroups and for estimating the principal eigenvalue of Schrödinger generators. The continuous or discrete time models studied in this work consists of N interacting particles evolving in an environment with soft obstacles related to a potential function V. These models are related to genetic algorithms and Moran type particle schemes. Their choice is not unique. We...
In this short note we discuss -supersymmetric worldlines of relativistic massless particles and review the known result that physical spin- fields are in the first BRST cohomology group. For , emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.
Let be a domain with smooth boundary and . A holomorphic function on is called a () peak function at if , , and for all . If is strongly pseudoconvex, then peak functions exist. On the other hand, J. E. Fornaess constructed an example in to show that this result fails, even for functions, on a weakly pseudoconvex domain [Math. Ann. 227, 173-175 (1977; Zbl 0346.32026)]. Subsequently, E. Bedford and J. E. Fornaess showed that there is always a continuous peak function on a...
For a smooth curve and a set in the plane , let be the space of finite Borel measures in the plane supported on , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on . Following [12], we say that is a Heisenberg uniqueness pair if . In the context of a hyperbola , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets of a collection of solutions to the Klein-Gordon equation. In this work, we mainly address the...
We prove a analytic versal deformation theorem in the Heisenberg algebra. We define the spectrum of an element in the Heisenberg algebra. The quantised version of the Morse lemma already shows that the perturbation series arising in a perturbed harmonic oscillator become analytic after a formal Borel transform.
A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.