Illustration of the quantum central limit theorem by independent addition of spins
In the joint paper of the author with K. P. Tod [J. Reine Angew. Math. 491, 183-198 (1997; Zbl 0876.53029)] they showed all local solutions of the Einstein-Weyl equations in three dimensions, where the background metric is homogeneous with unimodular isometry group. In particular, they proved that there are no solutions with Nil or Sol as background metric. In this note, these two special cases are presented.
Quantized contact transformations are Toeplitz operators over a contact manifold of the form , where is a Szegö projector, where is a contact transformation and where is a pseudodifferential operator over . They provide a flexible alternative to the Kähler quantization of symplectic maps, and encompass many of the examples in the physics literature, e.g. quantized cat maps and kicked rotors. The index problem is to determine when the principal symbol is unitary, or equivalently to determine...
On étudie un opérateur de la forme sur , où est un potentiel admettant plusieurs pôles en . Plus précisément, on démontre l’estimation de résolvante tronquée à hautes fréquences, classique dans les cas non-captifs, et qui implique l’effet régularisant standard pour l’équation de Schrödinger correspondante. La preuve est basée sur l’introduction d’une mesure de défaut micro-locale semi-classique. On démontre également, dans le même contexte, des inégalités de Strichartz pour l’équation de Schrödinger....
In this paper, we construct a hyperkähler structure on the complexification of any Hermitian symmetric affine coadjoint orbit of a semi-simple -group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of . By a relevant identification of the complex orbit with the cotangent space of induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on compatible with...
Dans ce travail, nous considérons un opérateur différentiel simple ainsi que des perturbations. Alors que le spectre de l’opérateur non-perturbé est confiné à une droite à l’intérieur du pseudospectre, nous montrons pour les opérateurs perturbés que les valeurs propres se distribuent à l’intérieur du pseudospectre d’après une loi de Weyl.
We study a discrete model of the Yang-Mills equations on a combinatorial analog of . Self-dual and anti-self-dual solutions of discrete Yang-Mills equations are constructed. To obtain these solutions we use both the techniques of a double complex and the quaternionic approach.
General quantum measurements are represented by instruments. In this paper the mathematical formalization is given of the idea that an instrument is a channel which accepts a quantum state as input and produces a probability and an a posteriori state as output. Then, by using mutual entropies on von Neumann algebras and the identification of instruments and channels, many old and new informational inequalities are obtained in a unified manner. Such inequalities involve various quantities which characterize...