C. N. Yang a současná matematika
In the first part of the paper we discuss possible definitions of Fock representation of the *-Lie algebra of the Renormalized Higher Powers of White Noise (RHPWN). We propose one definition that avoids the no-go theorems and we show that the vacuum distribution of the analogue of the field operator for the n-th renormalized power of WN defines a continuous binomial process. In the second part of the paper we present without proof our recent results on the central extensions of RHPWN, its subalgebras...
Any 7-dimensional cocalibrated -manifold admits a unique connection with skew symmetric torsion (see [8]). We study these manifolds under the additional condition that the -Ricci tensor vanish. In particular we describe their geometry in case of a maximal number of -parallel vector fields.
There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a -valued function defined on the boundary of a bounded regular domain of . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...
We give a characterization of conformal blocks in terms of the singular cohomology of suitable smooth projective varieties, in genus for classical Lie algebras and .
Using equivariant localization formulas we give a formula for conformal blocks at level one on the sphere as suitable polynomials.