Macro- and microsimulations for a sublimation growth of SiC single crystals.
In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view...
This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.
The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.
The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.
Kinetic theory and approach to equilibrium is usually studied in the realm of the Boltzmann equation. With a few notable exceptions not much is known about the solutions of this equation and about its derivation from fundamental principles. In 1956 Mark Kac introduced a probabilistic model of interacting particles. The velocity distribution is governed by a Markov semi group and the evolution of its single particle marginals is governed (in the infinite particle limit) by a caricature of the spatially...
The brownian web (BW), which developed from the work of Arratia and then Tóth and Werner, is a random collection of paths (with specified starting points) in one plus one dimensional space–time that arises as the scaling limit of the discrete web (DW) of coalescing simple random walks. Two recently introduced extensions of the BW, the brownian net (BN) constructed by Sun and Swart, and the dynamical brownian web (DyBW) proposed by Howitt and Warren, are (or should be) scaling limits of corresponding...
We consider the Fluctuation Dissipation Theorem (FDT) of statistical physics from a mathematical perspective. We formalize the concept of “linear response function” in the general framework of Markov processes. We show that for processes out of equilibrium it depends not only on the given Markov process X(s) but also on the chosen perturbation of it. We characterize the set of all possible response functions for a given Markov process and show that at equilibrium they all satisfy the FDT. That is,...
In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved...
Within the effective mass and nonparabolic band theory, a general framework of mathematical models and numerical methods is developed for theoretical studies of semiconductor quantum dots. It includes single-electron models and many-electron models of Hartree-Fock, configuration interaction, and current-spin density functional theory approaches. These models result in nonlinear eigenvalue problems from a suitable discretization. Cubic and quintic Jacobi-Davidson methods of block or nonblock version...