Dynamical Percolation
In dynamical percolation, the status of every bond is refreshed according to an independent Poisson clock. For graphs which do not percolate at criticality, the dynamical sensitivity of this property was analyzed extensively in the last decade. Here we focus on graphs which percolate at criticality, and investigate the dynamical sensitivity of the infinite cluster. We first give two examples of bounded degree graphs, one which percolates for all times at criticality and one which has exceptional...
For a class of infinite lattices of interacting anharmonic oscillators, we study the existence of the dynamics, together with Lieb-Robinson bounds, in a suitable algebra of observables.
We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function...
We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear...
Nous présentons un modèle mathématique permettant de reproduire le spectre expérimental des fréquences dans un composant électronique appelé boucle ouverte. Le spectre semble s’organiser suivant une contrainte de nature diophantienne sur les fréquences. Sa structure peut donc se comprendre via une étude de l’ensemble des fractions continues en fonction de leur longueur et de la taille des quotients partiels.
On considère une équation de Ginzburg-Landau complexe dans le plan. On étudie un régime asymptotique à petit paramètre dans lequel les solutions comportent des singularités ponctuelles, appelées points vortex, et on détermine un système d’équations différentielles ordinaires du premier ordre décrivant la dynamique de ces points jusqu’au premier temps de collision.
We consider a strongly magnetized plasma described by a Vlasov-Poisson system with a large external magnetic field. The finite Larmor radius scaling allows to describe its behaviour at very fine scales. We give a new interpretation of the asymptotic equations obtained by Frénod and Sonnendrücker [SIAM J. Math. Anal. 32 (2001) 1227–1247] when the intensity of the magnetic field goes to infinity. We introduce the so-called polarization drift and show that its contribution is not negligible in the...
We consider a strongly magnetized plasma described by a Vlasov-Poisson system with a large external magnetic field. The finite Larmor radius scaling allows to describe its behaviour at very fine scales. We give a new interpretation of the asymptotic equations obtained by Frénod and Sonnendrücker [SIAM J. Math. Anal. 32 (2001) 1227–1247] when the intensity of the magnetic field goes to infinity. We introduce the so-called polarization drift and show that its contribution is not negligible in the...
We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton–Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.
The electronic structure of the nanocylinder is investigated. Two cases of this kind of the nanostructure are explored: the defect-free nanocylinder and the nanocylinder whose geometry is perturbed by 2 heptagonal defects lying on the opposite sides. The characteristic quantity which is of our interest is the local density of states. To calculate it, the continuum gauge field-theory model will be used. In this model, the Dirac-like equation is solved on a curved surface. This procedure was used...
We present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and code. We...
We present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and...