Dissipative nonlinear structures in tokamak plasmas.
Two new time-dependent versions of div-curl results in a bounded domain are presented. We study a limit of the product , where the sequences and belong to . In Theorem 2.1 we assume that is bounded in the -norm and is controlled in the -norm. In Theorem 2.2 we suppose that is bounded in the -norm and is controlled in the -norm. The time derivative of is bounded in both cases in the norm of . The convergence (in the sense of distributions) of to the product of weak limits...
In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal , , and appropriate versions of , .
Computer simulation of a few thousands of particles moving (approximately) according to the energy and momentum conservation laws on a tessellation of squares in discrete time steps and interacting according to the predator-prey scheme is analyzed. The population dynamics are described by the basic Lotka-Volterra interactions (multiplication of preys, predation and multiplication of predators, death of predators), but the spatial effects result in differences between the system evolution and the...
Using the Maxwell-Higgs model, we prove that linearly unstable symmetric vortices in the Ginzburg-Landau theory are dynamically unstable in the H1 norm (which is the natural norm for the problem).In this work we study the dynamic instability of the radial solutions of the Ginzburg-Landau equations in R2 (...)
In dynamical percolation, the status of every bond is refreshed according to an independent Poisson clock. For graphs which do not percolate at criticality, the dynamical sensitivity of this property was analyzed extensively in the last decade. Here we focus on graphs which percolate at criticality, and investigate the dynamical sensitivity of the infinite cluster. We first give two examples of bounded degree graphs, one which percolates for all times at criticality and one which has exceptional...
For a class of infinite lattices of interacting anharmonic oscillators, we study the existence of the dynamics, together with Lieb-Robinson bounds, in a suitable algebra of observables.
We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function...
We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear...
Nous présentons un modèle mathématique permettant de reproduire le spectre expérimental des fréquences dans un composant électronique appelé boucle ouverte. Le spectre semble s’organiser suivant une contrainte de nature diophantienne sur les fréquences. Sa structure peut donc se comprendre via une étude de l’ensemble des fractions continues en fonction de leur longueur et de la taille des quotients partiels.
On considère une équation de Ginzburg-Landau complexe dans le plan. On étudie un régime asymptotique à petit paramètre dans lequel les solutions comportent des singularités ponctuelles, appelées points vortex, et on détermine un système d’équations différentielles ordinaires du premier ordre décrivant la dynamique de ces points jusqu’au premier temps de collision.