The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited
This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.
In this paper we study the parabolic Anderson equation , , , where the -field and the -field are -valued, is the diffusion constant, and is the discrete Laplacian. The -field plays the role of adynamic random environmentthat drives the equation. The initial condition , , is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump...
I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].
The purpose of the present article is to compare different phase-space sampling methods, such as purely stochastic methods (Rejection method, Metropolized independence sampler, Importance Sampling), stochastically perturbed Molecular Dynamics methods (Hybrid Monte Carlo, Langevin Dynamics, Biased Random Walk), and purely deterministic methods (Nosé-Hoover chains, Nosé-Poincaré and Recursive Multiple Thermostats (RMT) methods). After recalling some theoretical convergence properties for the...
A computer-aided method for accurately carrying out the Chapman-Enskog expansion of the Boltzmann equation, including its inelastic variant, is presented and employed to derive a hydrodynamic description of a dilute binary mixture of smooth inelastic spheres. Constitutive relations, formally valid for all physical values of the coefficients of restitution, are calculated by carrying out the pertinent Chapman-Enskog expansion to sufficient high orders in the Sonine polynomials to ensure numerical...
We provide a general lower bound on the dynamics of one dimensional Schrödinger operators in terms of transfer matrices. In particular it yields a non trivial lower bound on the transport exponents as soon as the norm of transfer matrices does not grow faster than polynomially on a set of energies of full Lebesgue measure, and regardless of the nature of the spectrum. Applications to Hamiltonians with a) sparse, b) quasi-periodic, c) random decaying potential are provided....
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...