Displaying 141 – 160 of 498

Showing per page

Euler hydrodynamics for attractive particle systems in random environment

C. Bahadoran, H. Guiol, K. Ravishankar, E. Saada (2014)

Annales de l'I.H.P. Probabilités et statistiques

We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.

Exactness of skew products with expanding fibre maps

Thomas Bogenschütz, Zbigniew Kowalski (1996)

Studia Mathematica

We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.

Existence and nonexistence of solutions for a model of gravitational interaction of particles, II

Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja (1994)

Colloquium Mathematicae

We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.

Existence of solutions for a model of self-gravitating particles with external potential

Andrzej Raczyński (2004)

Banach Center Publications

We study the existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential. The initial data are in spaces of (generalized) pseudomeasures. We prove existence of local and global-in-time solutions, and also a kind of stability of global solutions.

Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process

Benjamin Jourdain, Tony Lelièvre, Raphaël Roux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a free energy computation procedure, introduced in [Darve and Pohorille, J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot, J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time behavior of a nonlinear stochastic differential equation. This nonlinearity comes from a conditional expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to this equation has been proved in [Lelièvre et al., Nonlinearity21 (2008) 1155–1181],...

Existence, uniqueness and stability for spatially inhomogeneous Becker-Döring equations with diffusion and convection terms

P. B. Dubovski, S.-Y. Ha (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider the spatially inhomogeneous Bekker-Döring infinite-dimensional kinetic system describing the evolution of coagulating and fragmenting particles under the influence of convection and diffusion. The simultaneous consideration of opposite coagulating and fragmenting processes causes many additional difficulties in the investigation of spatially inhomogeneous problems, where the space variable changes differently for distinct particle sizes. To overcome these difficulties, we use a modified...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Currently displaying 141 – 160 of 498