Quasi-neutral limit for a viscous capillary model of plasma
The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.
The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.
We formulate some existence theorems for systems of elliptic equations with nonlocal terms. The proofs are based on the invariant region method. The results are applied to a multitemperature model of laser sustained plasma.
We consider plasma tearing mode instabilities when the resistivity depends on a flux function (ψ), for the plane slab model. This problem, represented by the MHD equations, is studied as a bifurcation problem. For so doing, it is written in the form (I(.)-T(S,.)) = 0, where T(S,.) is a compact operator in a suitable space and S is the bifurcation parameter. In this work, the resistivity is not assumed to be a given quantity (as usually done in previous papers, see [1,2,5,7,8,9,10], but it depends...
Ce papier porte sur l’étude mathématique d’une équation du type de Grad-Mercier qui décrit, dans certaines circonstances, l’équilibre d’un plasma confiné [H. Grad, P.N. Hu et D.C. Stevens, Proc. Nat. Acad. Sci. USA, 72,n10 (1975), 3789–3793, C. Mercier, Publication of Euratom, CEA, Luxembourg (1974), C. Mercier, Communications personnelles à R. Temam et aux auteurs]. Il s’agit de trouver une fonction “régulière” solution du systèmeoù est un ouvert borné régulier de , etL’opérateur non linéaire...
In this paper, travelling wave solutions for the Zakharov equation in plasmas with power law nonlinearity are studied by using the Weierstrass elliptic function method. As a result, some previously known solutions are recovered, and at the same time some new ones are also given.