Multicriteria Optimum Path Problems
This paper presents a state-of-the-art survey on multicriteria scheduling and introduces a definition of a multicriteria scheduling problem. It provides a framework that allows to tackle multicriteria scheduling problems, according to Decision Aid concepts. This problem is decomposed into three different problems. The first problem is about obtaining a model. The second one is how to take criteria into account and the third one is about solving a scheduling problem. An extension to an existing notation...
This paper presents a state-of-the-art survey on multicriteria scheduling and introduces a definition of a multicriteria scheduling problem. It provides a framework that allows to tackle multicriteria scheduling problems, according to Decision Aid concepts. This problem is decomposed into three different problems. The first problem is about obtaining a model. The second one is how to take criteria into account and the third one is about solving a scheduling problem. An extension to an existing...
Mathematical programming under multiple objectives has emerged as a powerful tool to assist in the process of searching for decisions which best satisfy a multitude of conflicting objectives. In multiobjective linear programming problems it is usually impossible to optimize all objectives in a given system. Trade-offs are properties of inadequately designed system a thus can be eliminated through designing better one. Multiobjective De Novo linear programming is problem for designing optimal system...
Optimization is an important tool widely used in formulation of the mathematical model and design of various decision making problems related to the science and engineering. Generally, the real world problems are occurring in the form of multi-criteria and multi-choice with certain constraints. There is no such single optimal solution exist which could optimize all the objective functions simultaneously. In this paper, ϵ-constraint method along with Karush−Kuhn−Tucker (KKT) condition has been used...
In this paper, we propose a nonlinear multi-objective optimization problem whose parameters in the objective functions and constraints vary in between some lower and upper bounds. Existence of the efficient solution of this model is studied and gradient based as well as gradient free optimality conditions are derived. The theoretical developments are illustrated through numerical examples.
This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of a parabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).
Nowadays, nature–inspired metaheuristic algorithms are most powerful optimizing algorithms for solving the NP–complete problems. This paper proposes three approaches to find near–optimal Golomb ruler sequences based on nature–inspired algorithms in a reasonable time. The optimal Golomb ruler (OGR) sequences found their application in channel–allocation method that allows suppression of the crosstalk due to four–wave mixing in optical wavelength division multiplexing systems. The simulation results...
In the paper we present second-order necessary conditions for constrained vector optimization problems in infinite-dimensional spaces. In this way we generalize some corresponding results obtained earlier.
The supervised learning process of multilayer feedforward neural networks can be considered as a class of multi-objective, multi-stage optimal control problem. An iterative parametric minimax method is proposed in which the original optimization problem is embedded into a weighted minimax formulation. The resulting auxiliary parametric optimization problems at the lower level have simple structures that are readily tackled by efficient solution methods, such as the dynamic programming or the error...
Different types of niching can be used in genetic algorithms (GAs) or evolutionary computations (ECs) to sustain the diversity of the sought optimal solutions and to increase the effectiveness of evolutionary multi-objective optimization solvers. In this paper four schemes of niching are proposed, which are also considered in two versions with respect to the method of invoking: a continuous realization and a periodic one. The characteristics of these mechanisms are discussed, while as their performance...
The paper presents a natural application of multi-objective programming to household production and consumption theory. A contribution to multi-objective programming theory is also included.