Displaying 141 – 160 of 200

Showing per page

Optimality conditions for weak efficiency to vector optimization problems with composed convex functions

Radu Boţ, Ioan Hodrea, Gert Wanka (2008)

Open Mathematics

We consider a convex optimization problem with a vector valued function as objective function and convex cone inequality constraints. We suppose that each entry of the objective function is the composition of some convex functions. Our aim is to provide necessary and sufficient conditions for the weakly efficient solutions of this vector problem. Moreover, a multiobjective dual treatment is given and weak and strong duality assertions are proved.

Optimisation d’une fonction linéaire sur l’ensemble des solutions efficaces d’un problème multicritère quadratique convexe

K. Belkeziz, A. Metrane (2004)

Annales mathématiques Blaise Pascal

Dans ce papier, nous caractérisons l’ensemble des points efficients d’un problème de programmation multicritère quadratique convexe. Nous ramenons ainsi le problème de la minimisation d’une fonction linéaire sur l’ensemble des points efficients à la résolution d’un problème de programmation fractionnaire.

Optimum beam design via stochastic programming

Eva Žampachová, Pavel Popela, Michal Mrázek (2010)

Kybernetika

The purpose of the paper is to discuss the applicability of stochastic programming models and methods to civil engineering design problems. In cooperation with experts in civil engineering, the problem concerning an optimal design of beam dimensions has been chosen. The corresponding mathematical model involves an ODE-type constraint, uncertain parameter related to the material characteristics and multiple criteria. As a~result, a~multi-criteria stochastic nonlinear optimization model is obtained....

Producing the tangency portfolio as a corner portfolio

Reza Keykhaei, Mohamad-Taghi Jahandideh (2013)

RAIRO - Operations Research - Recherche Opérationnelle

One-fund theorem states that an efficient portfolio in a Mean-Variance (M-V) portfolio selection problem for a set of some risky assets and a riskless asset can be represented by a combination of a unique risky fund (tangency portfolio) and the riskless asset. In this paper, we introduce a method for which the tangency portfolio can be produced as a corner portfolio. So, the tangency portfolio can be computed easily and fast by any algorithm designed for tracing out the M-V efficient frontier via...

Reconfigurable Dynamic Cellular Manufacturing System: A New Bi-Objective Mathematical Model

Masoud Rabbani, Mehran Samavati, Mohammad Sadegh Ziaee, Hamed Rafiei (2014)

RAIRO - Operations Research - Recherche Opérationnelle

Dynamic Cell Formation Problem (DCFP) seeks to cope with variation in part mix and demands using machine relocation, replication, and removing; whilst from practical point of view it is too hard to move machines between cells or invest on machine replication. To cope with this deficiency, this paper addresses Reconfigurable Dynamic Cell Formation Problem (RDCFP) in which machine modification is conducted instead of their relocation or replication in order to enhance machine capabilities to process...

Resolución por programación paramétrica del problema multiobjetivo lineal difuso.

Miguel Delgado, José Luis Verdegay, Amparo Vila (1985)

Trabajos de Estadística e Investigación Operativa

En este artículo se propone una solución difusa al problema Multiobjetivo Lineal Difuso. Tal solución contiene, como valores particulares, las soluciones puntuales que otros autores han obtenido. El método que se emplea es independiente de las funciones de pertenencia que se consideren. El problema también se extiende al caso en que el conjunto de restricciones sea, junto con los objetivos, difuso.

Saddle point criteria for second order η -approximated vector optimization problems

Anurag Jayswal, Shalini Jha, Sarita Choudhury (2016)

Kybernetika

The purpose of this paper is to apply second order η -approximation method introduced to optimization theory by Antczak [2] to obtain a new second order η -saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order η -saddle point and the second order η -Lagrange function are defined for the second order η -approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution of the...

Second order optimality conditions for differentiable multiobjective problems

Giancarlo Bigi, Marco Castellani (2010)

RAIRO - Operations Research

A second order optimality condition for multiobjective optimization with a set constraint is developed; this condition is expressed as the impossibility of nonhomogeneous linear systems. When the constraint is given in terms of inequalities and equalities, it can be turned into a John type multipliers rule, using a nonhomogeneous Motzkin Theorem of the Alternative. Adding weak second order regularity assumptions, Karush, Kuhn-Tucker type conditions are therefore deduced.

Currently displaying 141 – 160 of 200