Coincidence theorems for families of multimaps and their applications to equilibrium problems.
The paper deals with noncooperative games in which players constitute a measure space. Strategy profiles that are equal almost everywhere are assumed to have the same interactive effects. Under these circumstances we explore links between core solutions and Nash equilibria. Conditions are given which guarantee that core outcomes must be Nash equilibria and vice versa. The main contribution are results on nonemptieness of the core.