On a functional equation of Luce.
The paper solves the problem of minimization of the Kullback divergence between a partially known and a completely known probability distribution. It considers two probability distributions of a random vector on a sample space of dimensions. One of the distributions is known, the other is known only partially. Namely, only the conditional probability distributions of given are known for . Our objective is to determine the remaining conditional probability distributions of given such...
This article considers the problem of finding the optimal strategies in stochastic differential games with two players, using the weak infinitesimal operator of process xi the solution of d(xi) = f(xi,t,u1,u2)dt + sigma(xi,t,u1,u2)dW. For two-person zero-sum stochastic games we formulate the minimax solution; analogously, we perform the solution for coordination and non-cooperative stochastic differential games.
We present an axiomatic characterization of entropies with properties of branching, continuity, and weighted additivity. We deliberately do not assume that the entropies are symmetric. The resulting entropies are generalizations of the entropies of degree α, including the Shannon entropy as the case α = 1. Such “weighted” entropies have potential applications to the “utility of gambling” problem.
In this paper -person nonzero-sum games are considered. The dynamics is described by Ito stochastic differential equations. The cost-functions are conditional expectations of functionals of Bolza type with respect to the initial situation. The notion of -equilibrium is introduced in many-player stochastic differential games. Some properties of -equilibria are analyzed. Sufficient conditions are established guaranteeing the -equilibrium for the strategies of the players. In a particular case...