Page 1

Displaying 1 – 5 of 5

Showing per page

Equivalences and Congruences on Infinite Conway Games∗

Furio Honsell, Marina Lenisa, Rekha Redamalla (2012)

RAIRO - Theoretical Informatics and Applications

Taking the view that infinite plays are draws, we study Conway non-terminating games and non-losing strategies. These admit a sharp coalgebraic presentation, where non-terminating games are seen as a final coalgebra and game contructors, such as disjunctive sum, as final morphisms. We have shown, in a previous paper, that Conway’s theory of terminating games can be rephrased naturally in terms of game (pre)congruences. Namely, various...

Equivalences and Congruences on Infinite Conway Games∗

Furio Honsell, Marina Lenisa, Rekha Redamalla (2012)

RAIRO - Theoretical Informatics and Applications

Taking the view that infinite plays are draws, we study Conway non-terminating games and non-losing strategies. These admit a sharp coalgebraic presentation, where non-terminating games are seen as a final coalgebra and game contructors, such as disjunctive sum, as final morphisms. We have shown, in a previous paper, that Conway’s theory of terminating games can be rephrased naturally in terms of game (pre)congruences. Namely, various...

Currently displaying 1 – 5 of 5

Page 1