Previous Page 4

Displaying 61 – 78 of 78

Showing per page

On radially symmetric solutions of some chemotaxis system

Robert Stańczy (2009)

Banach Center Publications

This paper contains some results concerning self-similar radial solutions for some system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions with small mass. Our approach is based on a fixed point analysis for an appropriate integral operator acting on a suitably defined convex subset of some cone in the space of bounded and continuous functions.

On the analogy between self-gravitating Brownian particles and bacterial populations

Pierre-Henri Chavanis, Magali Ribot, Carole Rosier, Clément Sire (2004)

Banach Center Publications

We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Segel model of bacterial populations. In this biological context, it describes the chemotactic aggregation...

On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach

C. Franco, T. Tzvetkova-Chevolleau, A. Stéphanou (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive...

On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis

Piotr Biler, Lorenzo Brandolese (2009)

Studia Mathematica

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

Adrien Blanchet (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass M c such that the solutions exist globally in time if the mass is less than M c and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also...

PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic

Benoît Perthame (2004)

Applications of Mathematics

Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on...

Quantitative Analysis of Melanocyte Migration in vitro Based on Automated Cell Tracking under Phase Contrast Microscopy Considering the Combined Influence of Cell Division and Cell-Matrix Interactions

V. Letort, S. Fouliard, G. Letort, I. Adanja, M. Kumasaka, S. Gallagher, O. Debeir, L. Larue, F. Xavier (2010)

Mathematical Modelling of Natural Phenomena

The aim of this study was to describe and analyze the regulation and spatio-temporal dynamics of melanocyte migration in vitro and its coupling to cell division and interaction with the matrix. The melanocyte lineage is particularly interesting because it is involved in both embryonic development and oncogenesis/metastasis (melanoma). Biological experiments were performed on two melanocyte cell lines established from wild-type and β-catenin-transgenic...

Self-similarity in chemotaxis systems

Yūki Naito, Takashi Suzuki (2008)

Colloquium Mathematicae

We consider a system which describes the scaling limit of several chemotaxis systems. We focus on self-similarity, and review some recent results on forward and backward self-similar solutions to the system.

Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems

Sachiko Ishida, Tomomi Yokota (2023)

Archivum Mathematicum

This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

The Effect of Bacteria on Epidermal Wound Healing

E. Agyingi, S. Maggelakis, D. Ross (2010)

Mathematical Modelling of Natural Phenomena

Epidermal wound healing is a complex process that repairs injured tissue. The complexity of this process increases when bacteria are present in a wound; the bacteria interaction determines whether infection sets in. Because of underlying physiological problems infected wounds do not follow the normal healing pattern. In this paper we present a mathematical model of the healing of both infected and uninfected wounds. At the core of our model is an...

The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology

H. G. Othmer, K. Painter, D. Umulis, C. Xue (2009)

Mathematical Modelling of Natural Phenomena

We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding...

The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts

A. Szabó, A. Czirók (2010)

Mathematical Modelling of Natural Phenomena

Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy...

The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below

Tomasz Cieślak (2006)

Banach Center Publications

In [2] we proved two kinds of mechanisms of preventing the blow up in a quasilinear non-uniformly parabolic Keller-Segel systems. One of them was a priori boundedness from below of the Lyapunov functional. In fact, we were able to present a condition under which the Lyapunov functional is bounded from below and a solution exists globally. In the present paper we prove that whenever the Lyapunov functional is bounded from below the solution exists globally.

Volume Filling Effect in Modelling Chemotaxis

D. Wrzosek (2010)

Mathematical Modelling of Natural Phenomena

The oriented movement of biological cells or organisms in response to a chemical gradient is called chemotaxis. The most interesting situation related to self-organization phenomenon takes place when the cells detect and response to a chemical which is secreted by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many particularized models have been proposed to describe the aggregation phase of this process. Most of...

Currently displaying 61 – 78 of 78

Previous Page 4