Displaying 281 – 300 of 576

Showing per page

Geometrical aspects of exact boundary controllability for the wave equation - a numerical study

M. Asch, G. Lebeau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This essentially numerical study, sets out to investigate various geometrical properties of exact boundary controllability of the wave equation when the control is applied on a part of the boundary. Relationships between the geometry of the domain, the geometry of the controlled boundary, the time needed to control and the energy of the control are dealt with. A new norm of the control and an energetic cost factor are introduced. These quantities enable a detailed appraisal of the numerical solutions...

Global Carleman estimate for stochastic parabolic equations, and its application

Xu Liu (2014)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is addressed to proving a new Carleman estimate for stochastic parabolic equations. Compared to the existing Carleman estimate in this respect (see [S. Tang and X. Zhang, SIAM J. Control Optim. 48 (2009) 2191–2216.], Thm. 5.2), one extra gradient term involving in that estimate is eliminated. Also, our improved Carleman estimate is established by virtue of the known Carleman estimate for deterministic parabolic equations. As its application, we prove the existence of insensitizing controls...

Global controllability and stabilization for the nonlinear Schrödinger equation on an interval

Camille Laurent (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove global internal controllability in large time for the nonlinear Schrödinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L2. We also get a regularity result about the control if the data are assumed smoother.

Global controllability properties for the semilinear heat equation with superlinear term.

A. Y. Khapalov (1999)

Revista Matemática Complutense

We discuss several global approximate controllability properties for the semilinear heat equation with superlinear reaction-convection term, governed in a bounded domain by locally distributed controls. First, based on the asymptotic analysis in vanishing time, we study the steering of the projections of its solution on any finite dimensional space spanned by the eigenfunctions for the truncated linear part. We show that, if the control-supporting area is properly chosen, then they can approximately...

Globality in semisimple Lie groups

Karl-Hermann Neeb (1990)

Annales de l'institut Fourier

In the first section of this paper we give a characterization of those closed convex cones (wedges) W in the Lie algebra s l ( 2 , R ) n which are invariant under the maximal compact subgroup of the adjoint group and which are controllable in the associated simply connected Lie group S l ( 2 , R ) n , i.e., for which the subsemigroup S = ( exp W ) generated by the exponential image of W agrees with the whole group G (Theorem 13). In Section 2 we develop some algebraic tools concerning real root decompositions with respect to compactly...

High-Order Control Variations and Small-Time Local Controllability

Krastanov, Mikhail (2010)

Serdica Journal of Computing

The importance of “control variations” for obtaining local approximations of the reachable set of nonlinear control systems is well known. Heuristically, if one can construct control variations in all possible directions, then the considered control system is small-time locally controllable (STLC). Two concepts of control variations of higher order are introduced for the case of smooth control systems. The relation between these variations and the small-time local controllability is studied and...

Inégalité d'observabilité du type logarithmique et estimation de la fonction de coût des solutions des équations hyperboliques

Leila Ouksel (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Dans ce travail, nous donnons une estimation logarithmique des données de la solution u, d'un problème hyperbolique avec condition aux limites de type Neumann, par la trace de u restreinte à un ouvert du bord, pendant un temps suffisamment grand qui nous permet d'estimer la fonction de coût de ce problème.

Inégalités de Carleman globales pour les problèmes elliptiques non homogènes

Jean-Pierre Puel (2002/2003)

Séminaire Équations aux dérivées partielles

On établit ici, suivant [5], une inégalité de Carleman globale optimale pour les solutions faibles (au sens H 1 ) d’équations elliptiques générales avec second membre dans H - 1 et trace non nulle.La motivation, qui est expliquée dans l’introduction, réside dans l’obtention d’inégalités de Carleman globale pour l’opérateur de Navier-Stokes linéarisé afin, notamment, d’étudier les questions de contrôlabilité exacte sur les trajectoires pour les équations de Navier-Stokes. Une étape majeure consiste à obtenir...

Ingham-type inequalities and Riesz bases of divided differences

Sergei Avdonin, William Moran (2001)

International Journal of Applied Mathematics and Computer Science

We study linear combinations of exponentials e^{iλ_nt} , λ_n ∈ Λ in the case where the distance between some points λ_n tends to zero. We suppose that the sequence Λ is a finite union of uniformly discrete sequences. In (Avdonin and Ivanov, 2001), necessary and sufficient conditions were given for the family of divided differences of exponentials to form a Riesz basis in space L^2 (0,T). Here we prove that if the upper uniform density of Λ is less than T/(2π), the family of divided differences can...

Currently displaying 281 – 300 of 576