The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.
We study linear combinations of exponentials e^{iλ_nt} , λ_n ∈ Λ in the case where the distance between some points λ_n tends to zero. We suppose that the sequence Λ is a finite union of uniformly discrete sequences. In (Avdonin and Ivanov, 2001), necessary and sufficient conditions were given for the family of divided differences of exponentials to form a Riesz basis in space L^2 (0,T). Here we prove that if the upper uniform density of Λ is less than T/(2π), the family of divided differences can...
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation...
In this paper the classical detection filter design problem is considered as an input reconstruction problem. Input reconstruction is viewed as a dynamic inversion problem. This approach is based on the existence of the left inverse and arrives at detector architectures whose outputs are the fault signals while the inputs are the measured system inputs and outputs and possibly their time derivatives. The paper gives a brief summary of the properties and existence of the inverse for linear and nonlinear...
The input-output decoupling problem is studied for a class of recursive nonlinear systems (RNSs), i. e. for systems, modelled by higher order nonlinear difference equations, relating the input, the output and a finite number of their time shifts. The solution of the problem via regular static feedback known for discrete-time nonlinear systems in state space form, is extended to RNSs. Necessary and sufficient conditions for local solvability of the problem are proposed. This is the alternative to...
Integrated design of observer based Fault Detection (FD) for a class of uncertain nonlinear systems with Lipschitz nonlinearities is studied. In the context of norm based residual evaluation, the residual generator and evaluator are designed together in an integrated form, and, based on it, a trade-off FD system is finally achieved in the sense that, for a given Fault Detection Rate (FDR), the False Alarm Rate (FAR) is minimized. A numerical example is given to illustrate the effectiveness of the...
We consider an optimal control problem for a system of the form
= f(x,u), with a running cost L. We prove an interior
sphere property for the level sets of the corresponding value
function V. From such a property we obtain a semiconcavity
result for V, as well as perimeter estimates for the attainable
sets of a symmetric control system.
This paper studies the attainable set at time T>0 for the control system showing that, under suitable assumptions on f, such a set satisfies a uniform interior sphere
condition. The interior sphere property is
then applied to recover a semiconcavity result for the value
function of time optimal control problems with a general target, and to
deduce C1,1-regularity for boundaries of attainable sets.
Currently displaying 21 –
40 of
53