Page 1 Next

Displaying 1 – 20 of 53

Showing per page

Idempotent versions of Haar’s Lemma: links between comparison of discrete event systems with different state spaces and control

Mourad Ahmane, Laurent Truffet (2007)

Kybernetika

Haar's Lemma (1918) deals with the algebraic characterization of the inclusion of polyhedral sets. This Lemma has been involved many times in automatic control of linear dynamical systems via positive invariance of polyhedrons. More recently, it has been used to characterize stochastic comparison w.r.t. linear/integral ordering of Markov (reward) chains. In this paper we develop a state space oriented approach to the control of Discrete Event Systems (DES) based on the remark that most of control...

Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor

Nathalie Verdiere, Lilianne Denis-Vidal, Ghislaine Joly-Blanchard, Dominique Domurado (2005)

International Journal of Applied Mathematics and Computer Science

The aim of this paper is numerical estimation of pharmacokinetic parameters of the ligands of the macrophage mannose receptor, without knowing it a priori the values of these parameters. However, it first requires a model identifiability analysis, which is done by applying an algorithm implemented in a symbolic computation language. It is shown that this step can lead to a direct numerical estimation algorithm. In this way, a first estimate is computed from noisy simulated observations without it...

Identification of a quasilinear parabolic equation from final data

Luis a. Fernández, Cecilia Pola (2001)

International Journal of Applied Mathematics and Computer Science

We study the identification of the nonlinearities A,(→)b and c appearing in the quasilinear parabolic equation y_t − div(A(y)∇y + (→)b(y)) + c(y) = u inΩ × (0,T), assuming that the solution of an associated boundary value problem is known at the terminal time, y(x,T), over a (probably small) subset of Ω, for each source term u. Our work can be divided into two parts. Firstly, the uniqueness of A,(→)b and c is proved under appropriate assumptions. Secondly, we consider a finite-dimensional optimization...

Inégalité d'observabilité du type logarithmique et estimation de la fonction de coût des solutions des équations hyperboliques

Leila Ouksel (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Dans ce travail, nous donnons une estimation logarithmique des données de la solution u, d'un problème hyperbolique avec condition aux limites de type Neumann, par la trace de u restreinte à un ouvert du bord, pendant un temps suffisamment grand qui nous permet d'estimer la fonction de coût de ce problème.

Inégalités de Carleman globales pour les problèmes elliptiques non homogènes

Jean-Pierre Puel (2002/2003)

Séminaire Équations aux dérivées partielles

On établit ici, suivant [5], une inégalité de Carleman globale optimale pour les solutions faibles (au sens H 1 ) d’équations elliptiques générales avec second membre dans H - 1 et trace non nulle.La motivation, qui est expliquée dans l’introduction, réside dans l’obtention d’inégalités de Carleman globale pour l’opérateur de Navier-Stokes linéarisé afin, notamment, d’étudier les questions de contrôlabilité exacte sur les trajectoires pour les équations de Navier-Stokes. Une étape majeure consiste à obtenir...

Inequality-based approximation of matrix eigenvectors

András Kocsor, József Dombi, Imre Bálint (2002)

International Journal of Applied Mathematics and Computer Science

A novel procedure is given here for constructing non-negative functions with zero-valued global minima coinciding with eigenvectors of a general real matrix A. Some of these functions are distinct because all their local minima are also global, offering a new way of determining eigenpairs by local optimization. Apart from describing the framework of the method, the error bounds given separately for the approximation of eigenvectors and eigenvalues provide a deeper insight into the fundamentally...

Infinite eigenvalue assignment by an output feedback for singular systems

Tadeusz Kaczorek (2004)

International Journal of Applied Mathematics and Computer Science

The problem of an infinite eigenvalue assignment by an output feedback is considered. Necessary and sufficient conditions for the existence of a solution are established. A procedure for the computation of the output-feedback gain matrix is given and illustrated with a numerical example.

Infinite elementary divisor structure-preserving transformations for polynomial matrices

Nicholas Karampetakis, Stavros Vologiannidis (2003)

International Journal of Applied Mathematics and Computer Science

The main purpose of this work is to propose new notions of equivalence between polynomial matrices that preserve both the finite and infinite elementary divisor structures. The approach we use is twofold: (a) the 'homogeneous polynomial matrix approach', where in place of the polynomial matrices we study their homogeneous polynomial matrix forms and use 2-D equivalence transformations in order to preserve their elementary divisor structure, and (b) the 'polynomial matrix approach', where some conditions...

Infinite time regular synthesis

B. Piccoli (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we provide a new sufficiency theorem for regular syntheses. The concept of regular synthesis is discussed in [12], where a sufficiency theorem for finite time syntheses is proved. There are interesting examples of optimal syntheses that are very regular, but whose trajectories have time domains not necessarily bounded. The regularity assumptions of the main theorem in [12] are verified by every piecewise smooth feedback control generating extremal trajectories that reach the target...

Infinite-dimensional LMI approach to analysis and synthesis for linear time-delay systems

Kojiro Ikeda, Takehito Azuma, Kenko Uchida (2001)

Kybernetika

This paper considers an analysis and synthesis problem of controllers for linear time-delay systems in the form of delay-dependent memory state feedback, and develops an Linear Matrix Inequality (LMI) approach. First, we present an existence condition and an explicit formula of controllers, which guarantee a prescribed level of L 2 gain of closed loop systems, in terms of infinite-dimensional LMIs. This result is rather general in the sense that it covers, as special cases, some known results for...

Infinite-dimensional Sylvester equations: Basic theory and application to observer design

Zbigniew Emirsajłow (2012)

International Journal of Applied Mathematics and Computer Science

This paper develops a mathematical framework for the infinite-dimensional Sylvester equation both in the differential and the algebraic form. It uses the implemented semigroup concept as the main mathematical tool. This concept may be found in the literature on evolution equations occurring in mathematics and physics and is rather unknown in systems and control theories. But it is just systems and control theory where Sylvester equations widely appear, and for this reason we intend to give a mathematically...

Currently displaying 1 – 20 of 53

Page 1 Next