On a Generalized Linear Boundary Value Problem
The problem of linear feedback design for bilinear control systems guaranteeing their conditional closed-loop stability is considered. It is shown that this problem can be reduced to investigating the conditional stability of solutions of quadratic systems of differential equations depending on parameters of the control law. Sufficient conditions for stability in the cone of a homogeneous quadratic system are obtained. For second-order systems, invariant conditions of conditional asymptotic stability...
The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function . The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time is presented. A numerical...
The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for the value function of the problem....
Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...
Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...
Linear, continuous dynamical systems with multiple delays in control are studied. Their relative and absolute controllability with constrained control is discussed. Definitions of various types of constrained relative and absolute controllability for linear systems with delays in control are introduced. Criteria of relative and absolute controllability with constrained control are established. Constraints on control values are considered. Mutual implications between constrained relative controllability...
In this paper, we consider general nonlinear systems with observations, containing a (single) unknown function . We study the possibility to learn about this unknown function via the observations: if it is possible to determine the [values of the] unknown function from any experiment [on the set of states visited during the experiment], and for any arbitrary input function, on any time interval, we say that the system is “identifiable”. For systems without controls, we give a more or less complete...