The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 204

Showing per page

On determining unknown functions in differential systems, with an application to biological reactors.

Éric Busvelle, Jean-Paul Gauthier (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider general nonlinear systems with observations, containing a (single) unknown function φ. We study the possibility to learn about this unknown function via the observations: if it is possible to determine the [values of the] unknown function from any experiment [on the set of states visited during the experiment], and for any arbitrary input function, on any time interval, we say that the system is “identifiable”. For systems without controls, we give a more or less complete...

On directional change and anti-windup compensation in multivariable control systems

Dariusz Horla (2009)

International Journal of Applied Mathematics and Computer Science

The paper presents a novel description of the interplay between the windup phenomenon and directional change in controls for multivariable systems (including plants with an uneven number of inputs and outputs), usually omitted in the literature. The paper also proposes a new classification of anti-windup compensators with respect to the method of generating the constrained control signal.

On dynamic feedback linearization of four-dimensional affine control systems with two inputs

J.-B. Pomet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper considers control affine systems in λ 2 with two inputs, and gives necessary and sufficient conditions for dynamic feedback linearization of these systems with the restriction that the "linearizing outputs" must be some functions of the original state and inputs only. This also gives conditions for non-affine systems in λ 2 .

On exact controllability for the Navier-Stokes equations

O. Yu. Imanuvilov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain with control distributed in an arbitrary fixed subdomain. The result that we obtain in this paper is as follows. Suppose that we have a given stationary point of the Navier-Stokes equations and our initial condition is sufficiently close to it. Then there exists a locally distributed control such that in a given moment of time the solution of the Navier-Stokes...

On exact null controllability of Black-Scholes equation

Kumarasamy Sakthivel, Krishnan Balachandran, Rangarajan Sowrirajan, Jeong-Hoon Kim (2008)

Kybernetika

In this paper we discuss the exact null controllability of linear as well as nonlinear Black–Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with L 2 ...

On exact solutions of a class of interval boundary value problems

Nizami A. Gasilov (2022)

Kybernetika

In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differential equations, the coefficients and the boundary values of which are constant intervals. To solve this kind of interval BVP, we implement an approach that differs from commonly used ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs. The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval BVP. Therefore, the novelty of the...

On finite time stability with guaranteed cost control of uncertain linear systems

Atif Qayyum, Alfredo Pironti (2018)

Kybernetika

This paper deals with the design of a robust state feedback control law for a class of uncertain linear time varying systems. Uncertainties are assumed to be time varying, in one-block norm bounded form. The proposed state feedback control law guarantees finite time stability and satisfies a given bound for an integral quadratic cost function. The contribution of this paper is to provide a sufficient condition in terms of differential linear matrix inequalities for the existence and the construction...

On generalized Popov theory for delay systems

Silviu-Iulian Niculescu, Vlad Ionescu, Dan Ivanescu, Luc Dugard, Jean-Michel Dion (2000)

Kybernetika

This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an 2 norm bound constraint on disturbance attenuation. Note that the proposed results extend...

On global controllability of linear time dependent control systems

Alberto Tonolo (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let A , B be a linear time dependent control process, defined on an open interval J = ] a , ω [ with a - and ω ; in this paper we give a description of the function τ : I J , τ ( t ) = inf { t > t : ( A , B ) is t , t -globally controllable from 0 } where I = { t J : t J with A , B t , t -globally controllable from 0 } .

On harmonic disturbance rejection of an undamped Euler-Bernoulli beam with rigid tip body

Bao-Zhu Guo, Qiong Zhang (2004)

ESAIM: Control, Optimisation and Calculus of Variations

A hybrid flexible beam equation with harmonic disturbance at the end where a rigid tip body is attached is considered. A simple motor torque feedback control is designed for which only the measured time-dependent angle of rotation and its velocity are utilized. It is shown that this control can impel the amplitude of the attached rigid tip body tending to zero as time goes to infinity.

On harmonic disturbance rejection of an undamped Euler-Bernoulli beam with rigid tip body

Bao-Zhu Guo, Qiong Zhang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A hybrid flexible beam equation with harmonic disturbance at the end where a rigid tip body is attached is considered. A simple motor torque feedback control is designed for which only the measured time-dependent angle of rotation and its velocity are utilized. It is shown that this control can impel the amplitude of the attached rigid tip body tending to zero as time goes to infinity.

On improving sensitivity of the Kalman filter

Petr Franěk (2002)

Kybernetika

The impact of additive outliers on a performance of the Kalman filter is discussed and less outlier-sensitive modification of the Kalman filter is proposed. The improved filter is then used to obtain an improved smoothing algorithm and an improved state-space model parameters estimation.

On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems

Ivo Punčochář, Miroslav Šimandl (2014)

International Journal of Applied Mathematics and Computer Science

The paper considers the problem of active fault diagnosis for discrete-time stochastic systems over an infinite time horizon. It is assumed that the switching between a fault-free and finitely many faulty conditions can be modelled by a finite-state Markov chain and the continuous dynamics of the observed system can be described for the fault-free and each faulty condition by non-linear non-Gaussian models with a fully observed continuous state. The design of an optimal active fault detector that...

Currently displaying 41 – 60 of 204