Feedback control variables have no influence on the permanence of a discrete -species Schoener competition system with time delays.
This paper proposes a novel nonlinear control algorithm for idle-speed control of a gasoline engine. This controller is based on the feedback linearization approach and extends this technique to the special structure and specifications of the idle-speed problem. Special static precompensations and cascaded loops are used to achieve the desired bandwidth separation between the fast spark and slow air-bypass action. A key element is the inclusion of the (engine-speed dependent) induction to power...
We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...
We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...
We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...
We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...
In industrial control systems, practical interest is driven by the fact that today's processes need to be operated under tighter performance specifications. Often these demands can only be met when process nonlinearities are explicitly considered in the controller. Nonlinear predictive control, the extension of well-established linear predictive control to nonlinear systems, appears to be a well-suited approach for this kind of problems. In this paper, an optimal nonlinear predictive control structure,...
This article presents a methodology for the synthesis of finite-dimensional nonlinear output feedback controllers for nonlinear parabolic partial differential equation (PDE) systems with time-dependent spatial domains. Initially, the nonlinear parabolic PDE system is expressed with respect to an appropriate time-invariant spatial coordinate, and a representative (with respect to different initial conditions and input perturbations) ensemble of solutions of the resulting time-varying PDE system is...
In this paper we introduce the sufficient statistic algebra which is responsible for propagating the sufficient statistic, or information state, in the optimal control of stochastic systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then employed to derive finite- dimensional controllers. The sufficient statistic algebra enables us to determine a priori whether there exist finite-dimensional controllers; it also enables us to classify all finite-dimensional controllers....
This paper investigates the finite-time observability of probabilistic Boolean multiplex control networks (PBMCNs). Firstly, the finite-time observability of the PBMCNs is converted into the set reachability issue according to the parallel interconnection technique (a minor modification of the weighted pair graph method in the literature). Secondly, the necessary and sufficient condition for the finite-time observability of PBMCNs is presented based on the set reachability. Finally, the main conclusions...
This paper is concerned with the flexibility in the closed loop pole location when solving the optimal control problem (also called the optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the optimal control problem. These “ optimal fixed poles” are characterized in geometric as well as structural terms. A procedure...
We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of two-input driftless systems. We illustrate our results...
We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...
We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...